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Abstract
A unified lifting line method for the design and

analysis of axial flow propellers and turbines is presented.
The method incorporates significant improvements to
the classical lifting line methods for propeller design to
extend the method to the design of turbines. In addition,
lifting line analysis methods are developed to extend the
usefulness of the lifting line model to allow generation
of performance curves for off-design analysis. The result
is a fast computational methodology for the design and
analysis of propellers or turbines that can be used in
preliminary design and parametric studies. Design and
analysis validation cases are presented and compared to
experimental data.

1 Introduction
This manuscript presents a unified rotor lifting line

model based on numerical vortex lattice theory that
can be used for the optimization and analysis of both
propellers and turbines. The major contributions of this
work can be summarized as follows:

• Improved lifting line design method for axial flow
propellers,

• Implementation of lifting line design for axial flow
turbines,

• Development of a lifting line analysis capability for
propellers and turbines,

• Validation of these methods against experiment
and prior methods.

Lifting line methods, due to their computational
efficiency, have for many years been a key part of the
design process for propellers as preliminary parametric
design tools. The output of the typical lifting line
design provides a starting design for more sophisticated
lifting surface blade design, panel method analysis, and
computational fluid dynamics (CFD) analysis. The
lifting line method produces accurate prediction of rotor

forces and efficiency and quickly converges to optimal
rotor parameters such as diameter, rotation rate and
blade number. This makes the lifting line approach
suitable for parametric studies and system level design.
The main limitation of lifting line design method is in
the accuracy of the output blade geometry, so lifting-
surface geometry corrections are incorporated herein to
account for finite-aspect-ratio effects.

While axial-flow turbines are fundamentally no
different than propellers, lifting line theory is typically
not used in turbine design (in favor of blade element
momentum theory). However, lifting line theory
offers several advantages over turbine blade element
momentum theory (BEM), such as a more accurate
relationship between the induction velocities and the
radial circulation distribution. This makes the lifting
line model particularly attractive for problems such
as cavitation analysis of marine hydrokinetic turbines.
Also, like the BEM, the lifting line model is directly
extendable to the coupled aerodynamic, structural, and
controls analysis of large wind turbines, and thus, it
forms a strong foundation on which to build more
advanced multi-physics analysis tools. Thus, a second
thrust of this work applies the lifting line model to the
axial flow turbine case. In doing so, this work presents
a unified rotor lifting line model, which is capable of
handling both the propeller and turbine applications.

The standard rotor design problem involves
determining the radial circulation distribution that
either (a) minimizes propeller torque for a specified
thrust, or (b) maximizes turbine torque. From a
philosophical standpoint, these problems are nearly
identical, so one could ask: can a single design
methodology be developed that can be used for the
optimization of both propellers and turbines? Indeed,
the answer is yes, and the hybrid design algorithm is
developed and discussed herein, within the context of
more traditional propeller and turbine design algorithms.
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In addition to making improvements in the design
problem, for which lifting line methods have existed
for some time (Lerbs, 1952; Coney, 1989, e.g.), the
present work also extends the lifting line approach to
the performance analysis of propellers and turbines over
their entire range of operation.

In the design and analysis of rotors, there are three
overarching problems of interest:

(inputs)→(design)
(design)→(geometry)
(geometry)→(states)

The typical “inputs” to a rotor design are parameters
such as inflow velocity distribution, rotation speed,
diameter, required thrust (of a propeller), etc. The
“design” consists of distributions of circulation, chord,
lift coefficient, etc. versus radius: Kerwin, Coney, and
Hsin (1986) addressed the problem of (inputs)→(design)
for the propeller case, optimizing the circulation
distribution to maximize efficiency. Others have
addressed “design” optimization for the turbine case
(Falcão de Campos, 2007; Xu and Kinnas, 2010, e.g.),
and new methods for this purpose are developed
herein. Coney (1989) has addressed the problem
of (design)→(geometry), and his methods have been
adopted herein. The design point is one of many possible
“states”, where a “state” is a physically-consistent set
of wind speed, rotation speed, circulation distribution,
etc. (that does not necessarily correspond to the design
point). Each point on the performance curve represents
one “state” of the system. Many methods exist to solve
the problem of (geometry)→(states), one such lifting-line
method being that of (Kerwin, 1959). However, as Epps
(2010a) shows, one can skip the intermediate “geometry”
step and find the off-design performance curve directly
from the design-point performance:

(design)→(states)

The present method extends the work of (Epps, 2010a),
now including the capability of (geometry)→(states)
analysis, as well as employing more accurate corrections
for finite-aspect-ratio effects.

The performance analysis approach presented herein
uses the power of the lifting line method in computing
the rotor flowfield, including induced velocities which are
critical for the analysis of blade forces. Then 2D foil lift
and drag models, corrected for the 3D inflow are used
to compute the blade forces and ultimately the rotor
forces and efficiency. Analysis capability allows for the
generation of typical performance curves for propellers
(i.e KT vs. Js) and turbines (CP vs. λ)). This allows the
method to be used for off design analysis and allows the
method to be incorporated into system-level engineering
tools such as integrated ship design codes.

Interestingly, the wind turbine community typically
does not follow the (inputs) → (design) → (geometry)
→ (states) workflow. Turbine geometry optimization
is typically performed via genetic algorithm (i.e.
computing the states and then overall performance for
randomly-generated geometries), which is essentially
(inputs) → (geometry) → (states) (Sale, 2010; Buhl,
2011). While the flexibility of the genetic algorithm
affords flexibility with regards to the multi-objective
nature of the turbine design optimization problem, it
does not provide a rigorous analytical framework to
verify that the converged design is in fact the optimum
solution. Thus, a second thrust of the present work is to
apply the concepts of propeller lifting line theory to the
turbine design problem, providing an analytic framework
by which to address the turbine design problem:

(inputs)→(design)

For both design and analysis modes, the present
method provides detailed rotor information such as
velocity fields or blade pressure distributions. Such
information can be useful for cavitation analysis, blade
stress analysis, or wake field studies for turbine array
design. Examples of cavitation analysis using the
methodology can be found in (Epps et al, 2011) and
the implementation of stress analysis can be found in
(Ketcham, 2010).

The blade section algorithms used in analysis are
modular and can be adopted from sources such as blade
section libraries or generated through coupling with
blade section solvers such as XFOIL (Drela, 1989). In
addition, lifting line camber corrections developed by
Morgan et al (1968) have been included in the geometry
generation and analysis modules to allow the analysis
of existing rotor geometries with reasonable accuracy.
Examples of geometry analysis are presented.

The method has also been extended to the design
and analysis of multi-component rotors. For example,
an implementation of the methods for the design
of contra-rotating propellers (CRP) can be found in
(Laskos, 2010), and the CRP performance analysis
was implemented by Kravitz (2011). Efforts to
incorporate ducted rotors have also been implemented
by Stubblefield (2008), and experimental validation of
ducted rotors is also a current effort.

The present methods have been implemented in the
open-source numerical code OpenProp v3.0 (Epps and
Kimball, 2013), which is used for all calculations herein.

This article is organized as follows. In §2, the
unified rotor lifting line model is presented. In
§3, the optimization of both propellers and turbines
is considered, and a hybrid lifting-line/blade-element-
momentum rotor optimization method is presented in
§3.5. Examples illustrating the design of optimized
rotors are presented in §4. In §5, the performance
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analysis method is described. Finally, §6 presents
examples illustrating the off-design performance of
propellers and turbines.

2 Rotor lifting-line model
This section presents a unified rotor lifting-line model

that can be used for both propeller and turbine design
and analysis. The sign conventions are developed with
respect to the propeller, and it is noted what signs must
change to represent the turbine case. Appropriate non-
dimensionalization is given in §3.7. The foundational
material given in this sub-section is well-documented in
the literature (Glauert, 1935; Lerbs, 1952; Kerwin and
Hadler, 2010, e.g.).

Figure 1 illustrates the fundamental assumptions of
moderately-loaded propeller theory: (1) the Z lifting
lines have equal angular spacing and identical loading;
(2) the lifting lines are straight, radial lines; and (3) each
trailing vortex is assumed to be a helix with fixed radius
and pitch, where the pitch angle βv(rv) is related to the
wake-aligned inflow angle at the lifting line, βi(rc).

Va

ω rotor blade
(lifting line)

axial inflow

rotation rate

vortex wake

Figure 1: Classical propeller lifting line model, with
the control points on the key blade indicated by ‘•’.

Figure 2 illustrates the velocities and forces (per unit
radius) on a blade section: axial and tangential inflow
velocities, Va and Vt; induced velocities, u∗a and u∗t ; and
angular velocity ω. The total resultant inflow velocity
has magnitude V ∗ =

√
(Va + u∗a)2 + (ωr + Vt + u∗t )2

and is oriented at pitch angle βi to the et direction.

tanβi =
Va + u∗a

ωr + Vt + u∗t
(2.1)

Also shown on Figure 2 are the angle of attack, α;
blade pitch angle, θ = α + βi; circulation, Γ er; inviscid
lift, Fi = ρV ∗Γ; and viscous drag, Fv = 1

2ρ(V ∗)2CDc,
given the fluid density ρ, chord c, and drag coefficient
CD. The section lift coefficient is defined as

CL ≡
Fi

1
2ρ(V ∗)2c

=
2 Γ

V ∗ c
(2.2)

The thrust and torque acting on the rotor are

T = Z
∫ R

Rh

[Fi cosβi − Fv sinβi] dr (ea) (2.3)

Q = Z
∫ R

Rh

[Fi sinβi + Fv cosβi] r dr (−ea) (2.4)

where Rh and R are the hub and tip radii.

Va

ωr + Vt

F V∗

Γ er

−u∗t
u∗a

βi

Fv

Fi

et

ea

α

θ
V0

u
∗

t
< 0

as drawn

ββi

Figure 2: Propeller velocity diagram at radius r.

The power required to drive the propeller is P = Qω,
and The useful power produced by the propeller is TVs
where Vs is the ship speed (i.e. free-stream speed), so the
efficiency is

η =
TVs
Qω

(2.5)

This rotor lifting-line formulation can also describe
a horizontal-axis turbine simply by allowing a negative
circulation (Γ < 0) and other associated sign changes.
In fact, equations (2.1)-(2.4) are identical to those found
in turbine blade element theory (Manwell et al, 2009),
allowing for sign and notation differences. Figure 3
shows the turbine velocity/force diagram, with {Γ, Fi,
u∗a, −u∗t , CL, α, T , Q, P} < 0 as drawn. Since these
sign changes are automatically handled by the equations
given herein, the present lifting-line model unifies both
the propeller and turbine cases.

V∗V0

Fi

Fv

F

as drawn

Γ er

−u
∗

a

u
∗

t

Va

ωr + Vt

α

θ et

ea

{Γ, Fi,α, u∗

a} < 0

β βi

Figure 3: Turbine velocity diagram at radius r.
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2.1 Wake model

The wake model consists of constant-pitch, constant-
radius helical vortices, whose pitch are aligned with the
total velocity at the blade, including induced velocities
(i.e. aligned with βi, as shown in Figure 2).

The induced velocities and loads shown in Figure 2
are computed at control points on the key lifting line at
radial locations rc(m), (m=1...M), at the midpoint of each
vortex panel. The induced velocities are as follows:

u∗a(m) =

M∑
n=1

ū∗a(m,n) Γ(n) (2.6)

(and similarly for u∗t ), where ū∗a(m,n) and ū∗t (m,n) are the
axial and tangential velocity induced at rc(m) on the key
blade by unit-strength ‘horseshoe vortices’ surrounding
the nth panel of each of the Z blades (where a horseshoe
vortex consists of a segment of the lifting line and the
trailing vortex filaments shed from its endpoints). The
horseshoe influence functions (ū∗a and ū∗t ) are in general
computed via the Biot-Savard law, but for a purely
helical wake, they can be evaluated analytically using
the formulas in (Lerbs, 1952) and (Wrench, 1957), which
depend on the wake pitch angle.

As described in detail in (Epps, 2013) and illustrated
in Figures 4 and 5, the present wake model differs
from the classical model. In the classical model, the
wake pitch is interpolated from the pitch computed
at the control points, which introduces mathematical
inconsistencies in the (Lerbs, 1952) and (Wrench, 1957)
formulas. The present wake model overcomes this
difficulty by assuming that each vortex panel has
constant pitch and that the pitch angle of the trailing
vortices are analytically related to the pitch angle at the
control points via rv(n) tanβv(n) = rv(n+1) tanβv(n+1) =
rc(n) tanβi(n). This assumption makes the horseshoe
influence functions analytically consistent with the pitch
at the control points, and thus, it greatly improves the
numerical stability and robustness of the rotor lifting line
model.

In the classical wake model, one trailing vortex
springs from the lifting line at each interior vortex
point rv(n=2,...,M), and the strength of this vortex is
the difference in the circulation between adjacent vortex
panels, Γ(n−1)−Γ(n). In the present model, two vortices
are shed at each interior vortex point: The vortex shed
from rv(n) with pitch angle rc(n−1) tanβi(n−1)/rv(n) has
strength Γ(n−1), and the vortex shed with pitch angle
rc(n) tanβi(n)/rv(n) has strength −Γ(n). In the case that
the wake truly is constant-pitch, rc(n−1) tanβi(n−1) =
rc(n) tanβi(n) and these two vortices are coincident, as in
the classical model. In both models, one trailing vortex
springs from each exterior vortex point (rv(n=1) and
rv(n=M+1)), with strengths −Γ(1) and Γ(M), respectively.

In reality, the near wake is a continuous vortex sheet,
as opposed to a discrete lattice of horseshoe vortices. In
modeling this continuous sheet with a discrete number of
horseshoes, there is no physical reason to require a single
vortex shed from the lifting line at any particular radius:
Each constant-strength horseshoe satisfies Helmholtz’
Laws independent of the other horseshoes. By setting
pitch analytically and allowing the possibility of free
vortices with differing pitch as described, the math
embodied in the Lerbs/Wrench equations works out to
be theoretically consistent with itself. Further details of
the present wake model are given in (Epps, 2013).

Present wake model

Classical wake model

...

. . .

. . .

. . .

...

...

...

. . .

. . .. . .

. . .rc(n�1) tan�i(n�1)/rv(n�1)

rc(n�1) tan�i(n�1)/rv(n)

rc(n) tan�i(n)/rv(n)

rc(n) tan�i(n)/rv(n+1)

tan�v(n�1)

tan�v(n+1)

tan�v(n)

�(n)

�(n)

��(n)

�(n)

�(n�1)

�(n�1)

�(n�1)

��(n�1)

�(n) � �(n+1)

�(n�1) � �(n)

�(n�2) � �(n�1)
rv(n�1)

rc(n�1)

rv(n)

rc(n)

rv(n+1)

rv(n�1)

rc(n�1)

rv(n)

rc(n)

rv(n+1)

Figure 4: The classical wake model represents a single
continuous vortex sheet, whereas the present wake model
represents each panel as a constant-pitch vortex sheet
(adjacent panels plotted in black and red for clarity).

(a) (b)

n = 1

2

3
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n = 1

2
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4

5

Figure 5: Example illustration of the key blade for the
(a) classical wake model and (b) present wake model
(with adjacent panels plotted in black and red for clarity)
for a linearly-varying wake pitch:
(r/R) tanβi(r) = J

π

[
0.7 + 0.3 r−Rh

R−Rh

]
.
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2.2 Hub and duct modeling

Following (Kerwin and Hadler, 2010), a hub of radius
Rh is modeled as an image vortex lattice, where the
image trailing vortex filaments have equal and opposite
strength as the real vortex filaments and are stationed at
radii rh(n,k) =

R2
h

rv(n,k) and have pitch angle tanβh(n,k) =
rc(n) tan βi(n)

rh(n,k) where k = 1, 2 denotes the edges of the
vortex panel (Epps, 2013). The image vorticity is shed
through the trailing surface of the hub and rolls up into
a hub vortex of radius, Rhv, and the drag due to the
hub vortex is Dh = ρZ2

16π

[
ln
(
Rh

Rhv

)
+ 3
]

[Γ(1)]2 (−ea). If
a hub image is used in a propeller design, this hub drag
is added to the required thrust but does not otherwise
alter the optimization equations.

The blade image method can also be applied in
the case of a duct to account for the local blade-duct
interaction effects during the design process (Kinnas and
Coney, 1992). Typically in this case, a thrust ratio
is specified, so the rotor is only required to produce a
fraction of the total required thrust. The duct itself
is modeled as a ring vortex system, which prescribes
circulation on the duct to give the intended duct
thrust. During each iteration of the design optimization
procedure, the duct loading is updated to give the
required duct thrust, and the mutual interaction between
rotor and duct is recalculated. Details of the duct model
are given in (Taylor, 1996) and (Stubblefield, 2008).

Based on the theory in (Kerwin and Hadler, 2010)
and the improved wake model in (Epps, 2013), this rotor
lifting-line model was coded in the open-source suite
OpenProp 3.0 (Epps and Kimball, 2013), which is used
for all calculations herein.

3 Design optimization
The standard propeller design problem is to find

the optimum circulation distribution, Γ, for a given
inflow (Va, Vt, ω) and blade outline (c, CD), such that
efficiency is maximized for a prescribed thrust. For the
turbine case, the design problem is simply to maximize
torque (for the given inflow and blade outline) with no
thrust constraint. Since a wake-alignment procedure
can be used to determine {u∗a, u∗t , βi, V ∗, ū∗a, ū∗t }
and ultimately {T ,Q,η} for a given Γ, the circulation
distribution serves as a convenient ‘parameter system’ in
the design optimization. That is, both the propeller and
turbine design optimization problems reduce to simply
finding the optimum circulation distribution.

3.0.1 Simple chord length optimization

Between optimizer iterations, chord lengths may be
optimized for drag, structural, or cavitation concerns. A
simple method is to set the chord in order to hold the
lift coefficient to some maximum allowable value

c =
2 Γ

V ∗ CL,max
(3.1)

in which case the lift coefficient at the design point
is CL0 (r) = CL,max(r) by construction. Many other
methods exist in the literature. The present lifting line
framework serves as the foundation upon which new
methods may be developed and investigated.

3.1 Classical propeller theory

Betz (1919) considered the propeller problem for
the case of uniform inflow (Va = Vs) and no viscous
forces. Assuming that Γ(r) is the optimum circulation
distribution, he then added an increment of circulation
δΓ at some arbitrary radius r, causing incremental
changes in thrust and torque, δT and δQ. Betz argued
that for Γ(r) to be optimum, the following ‘efficiency’
should be independent of radius:

η∗ =
δT Vs
δQω

=
Vs
ωr

ωr + 2u∗t
Vs + 2u∗a

= constant (3.2)

Assuming u∗a � Vs and u∗t � ωr, one can add higher-
order terms to arrive at the ‘Betz condition’ for optimum
free-running propellers

tanβ(r)

tanβi(r)
= constant (3.3)

Since tanβ(r) = Vs/(ωr), equation (3.3) has the very
important implication that r tanβi(r) = constant, or
that the wake forms a constant-pitch helical vortex sheet.

Lerbs (1952) extended the work of Betz to the case
of non-uniform axial inflow Va(r), in which case

η∗ =
δT Vs
δQω

=
Vs
ωr

ωr + 2u∗t
Va + 2u∗a

≈ Vs
Va

(
Va
ωr

)2
(ωr)2 + 2u∗t (ωr) + (u∗t )

2

V 2
a + 2u∗aVa + (u∗a)2

= constant

and thus the optimum propeller satisfies the ‘Lerbs
criterion’:

tanβ(r)

tanβi(r)
= constant ·

√
Va(r)

Vs
(3.4)

A propeller design code implementing Lerbs criterion
(developed by Kerwin (2007)) is used herein as validation
for the more advanced Lagrange multiplier methods
developed subsequently.

3.2 Lagrange multiplier methods

The propeller optimization problem can also be
solved using the ‘Lagrange multiplier method’. Kerwin,
Coney, and Hsin (1986) have solved this problem for
both single- and multi-component propulsors. In the
single-component case, they find the set of M vortex
panel circulations that produce the least torque for a
specified thrust, T = Ts. They form an auxiliary
function, H = Q + λ1(T − Ts), where λ1 is a Lagrange
multiplier, and they find the optimum Γ by setting the
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partial derivatives of H to zero

∂H

∂Γ(i)
= 0,

∂H

∂λ1
= 0 (3.5)

This is a system of M + 1 non-linear equations for as
many unknowns {Γ(i=1...M), λ1}, which can be solved
iteratively.

For the turbine case, the design problem is simply to
maximize torque, with no thrust constraint

∂Q

∂Γ(i)
= 0 (3.6)

This is arrived at from (3.5) obviously by setting λ1 = 0
and removing the ∂H

∂λ1
= 0 equation. Thus, there should

exist a single formulation that can be used for both the
propeller (3.5) or turbine (3.6) applications.

Rewriting the thrust and torque in terms of the
induced velocities and assuming Vt = 0 (without loss
of generality), equations (2.3) and (2.4) become

T

ρZ =

M∑
m=1

{
[ωrc + u∗t ]Γ− 1

2V
∗CDc[Va + u∗a]

}
4rv

(3.7)

Q

ρZ =

M∑
m=1

{
[Va + u∗a]Γ + 1

2V
∗CDc[ωrc + u∗t ]

}
rc4rv

(3.8)

The key difficulty of this problem is in how to
properly take the derivatives of {u∗a, u∗t , V ∗} with respect
to Γ. We will now show that while the standard approach
to these derivatives successfully works for propellers, it
does not yield the correct turbine optimization.

3.3 Lifting line approach

In the standard lifting line approach, the partial
derivatives of the induced velocities are assumed to be

∂u∗a(m)

∂Γ(i)
= ū∗a(m,i)

∂u∗t (m)

∂Γ(i)
= ū∗t (m,i) (3.9)

∂V ∗(m)

∂Γ(i)
= sinβi(m) ū∗a(m,i) + cosβi(m) ū∗t (m,i)

which is consistent with (2.6) and the definition of V ∗.

3.3.1 Lifting-line propeller optimization

Using the lifting line assumptions (3.9), the propeller
optimization equations (3.5) become

(Va(i) + u∗a(i))rc(i)4rv(i)

+
∑
m

ū∗a(m,i) Γ(m)rc(m)4rv(m)

+
∑
m

1
2CD(m)c(m)

∂V ∗(m)
∂Γ(i) [ωrc(m) + u∗t (m)]rc(m)4rv(m)

+
∑
m

1
2CD(m)c(m)V ∗(m)[ū∗t (m,i)]rc(m)4rv(m)

+ λ1[ωrc(i) + u∗t (i)]4rv(i)

+ λ1

∑
m

ū∗t (m,i) Γ(m)4rv(m)

− λ1

∑
m

1
2CD(m)c(m)

∂V ∗(m)
∂Γ(i)

[
Va(m) + u∗a(m)

]
4rv(m)

− λ1

∑
m

1
2CD(m)c(m)V ∗(m)[ū∗a(m,i)]4rv(m)

= 0 for i = 1 . . .M

∑
m

[ω rc(m) + u∗t (m)]Γ(m)4rv(m)

−
∑
m

1
2CD(m)c(m)V ∗(m)[Va(m) + u∗a(m)]4rv(m)

= Ts/(ρZ) (3.10)

This system of equations can be solved in a number of
ways. Coney (1989) linearizes (3.10) into a system of the
form [A] · [Γ;λ1] = [B]. He then iteratively solves for {Γ,
λ1} and then ‘aligns the wake’ by updating the other
parameters {u∗a, u∗t , βi, βv, ū∗a, ū∗t , V ∗, ∂V

∂Γ
}. Coney’s

implementation is embodied in the computer code PLL.

This linearized solution procedure is tenuous, since
it is prone to crash if the induced velocities do not vary
smoothly over the span. Epps et al (2009) overcame
this difficulty by smoothing the induced velocities at the
blade root and tip between each solver iteration. Epps’
method is coded in OpenProp versions 2.4 and prior.

The present ‘LL-Linear’ method also iteratively
solves a linearized version of (3.10). However, it
employs the present wake model, which analytically
relates the wake pitch angle βv to the inflow angle, βi.
By prescribing the correct analytic wake pitch angle,
the ‘LL-Linear’ method is much more robust than its
predecessors. In fact, no smoothing of the induced
velocities is performed in the ‘LL-Linear’ method, and
it is capable of designing propellers for bollard pull, in
which case PLL and OpenProp 2.4 fail.

A possibly more robust approach is to solve (3.10)
using a Newton solver. In the ‘LL-Newton’ formulation
developed herein, {Γ, u∗a, u∗t , tanβi, λ1} are taken as the
vector of unknowns updated by the Newton solver, and
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{ū∗a, ū∗t , V ∗, ∂V
∂Γ

} are updated between solver iterations.

It is easy to verify that, ignoring viscous effects
CD = 0, this propeller optimization method is consistent
with the Lerbs criterion (3.4). Using the approximations
(3.21) (to appear in §3.5), equations (3.10) imply

λ1 ≈ −
Va(i) + 2u∗a(i)

ωr(i) + 2u∗t (i)
rc(i) (3.11)

Since λ1 = constant by definition, it is easy to see that
(3.11) implies η∗ = constant as well, thus satisfying the
Lerbs criterion for the propeller.

3.3.2 Lifiting-line turbine optimization

While the lifting line approach embodied in (3.10)
yields the proper propeller optimization, it is not
applicable to the turbine design problem. The following
lifting line turbine optimization system of equations can
be arrived at from (3.10) by setting λ1 = 0 and removing
the thrust constraint, or it may be derived directly from
(3.6), (3.8), and (3.9). Either results in this (incorrect)
system of turbine optimization equations:

(Va(i) + u∗a(i))rc(i)4rv(i)

+
∑
m

ū∗a(m,i) Γ(m)rc(m)4rv(m)

+
∑
m

1
2CD(m)c(m)

∂V ∗(m)
∂Γ(i) [ωrc(m) + u∗t (m)]rc(m)4rv(m)

+
∑
m

1
2CD(m)c(m)V ∗(m)[ū∗t (m,i)]rc(m)4rv(m)

= 0 for i = 1 . . .M (3.12)

In the turbine ‘LL-Newton’ method, equations (3.12)
are solved using a Newton solver that employs {Γ, u∗a,
u∗t , βi} as the vector of unknowns, with {ū∗a, ū∗t , V ∗,
∂V
∂Γ

} updated between solver iterations, similar to the
propeller ‘LL-Newton’ method.

Turbines optimized by (3.12) underperform turbine
momentum theory. The reason for the shortcomings of
this method can be shown by simplifying (3.12) using
approximations (3.21) (to appear in §3.5) and CD = 0.
In that case, (3.12) results in u∗a(i) ≈ −1

2Va(i), which
does not agree with classical momentum theory.

This problem has been discovered and addressed
by other researchers who have used this method.
For example, Kinnas et al (2012) obtain a baseline
circulation distribution by solving (3.12) and then
search for the optimal solution by scaling their baseline
distribution by an arbitrary linear function. Another
work-around would be to abandon (3.12) altogether and
instead search for the optimum circulation distribution
using a genetic algorithm. In lieu of these searching
methods, we seek to develop a system of equations that
directly yields the optimum circulation distribution.

3.4 Classical turbine momentum theory

Reconsider the turbine optimization problem
of maximizing negative torque (and hence, power
extraction) for given a turbine radius R, rotation speed
ω, and uniform inflow (Va = Vs) with no swirl (Vt = 0).
In the momentum formulation, the torque is computed
via

Q =

∫ R

0

ρ(Vs + ũa)(2ũt)2πr
2dr (3.13)

where ṁ = ρ(Vs + ũa)2πr dr is the mass flow rate
through an annulus of radius r and span dr, ũa and ũt
are the circumferential average induced velocities at the
propeller disk:

ũa(r) =
Z

4πr tan β̃i(r)
Γ(r)

ũt(r) = − Z
4πr

Γ(r) (3.14)

(Hough and Ordway, 1964), and (2ũt) is the
circumferential average swirl velocity far downstream.

Momentum theory assumes from the outset that
the wake forms a constant-radius constant-pitch vortex
sheet (Glauert, 1935). This assumption has two main
implications: First, it can be shown that in this case the
induced velocity is perpendicular to the resultant inflow
(Kerwin and Hadler, 2010). That is,

(tan β̃i ≡)
Vs + ũa
ωr + ũt

= − ũt
ũa

(3.15)

(Manwell et al, 2009, eqn. (3.25)). This equation can be
manipulated as follows to lead to a “design constraint”
that is simply a restatement of (3.15):

∂

∂ũt

{
(Vs + ũa)ũa = −(ωr + ũt)ũt

}
which leads to the design constraint that appears in
classical turbine momentum theory:

∂ũa
∂ũt

= −ωr + 2ũt
Vs + 2ũa

(3.16)

Second, the circumferential average velocities (3.14)
were derived under the assumptions of constant-radius
constant-pitch wake (Hough and Ordway, 1964). The
critical feature of these velocities is that they are
independent of the circulation at other radii. We
will exploit this feature when evaluating the derivatives{
∂u∗

a

∂Γ ,
∂u∗

t

∂Γ ,
∂V ∗

∂Γ

}
in §3.5. For now, we continue by noting

that this radial independence means that optimization
can be performed strip-wise by maximizing F = (Vs +
ũa)ũt for each blade section independently. Design
optimization is performed by setting ∂F

∂ũt
= 0 while
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enforcing (3.16). That is,

(Vs + ũa) +

(
∂ũa
∂ũt

)
ũt = 0 (3.17)

Making use of (3.15) and (3.16)

(Vs + ũa) +

(
−ωr + 2ũt
Vs + 2ũa

)
ũt ·

(
−Vs + ũa
ωr + ũt

ũa
ũt

)
= 0

leads to the resulting optimization equation:

ũt
ωr

= −Vs + 3ũa
Vs + 4ũa

(3.18)

(Manwell et al, 2009, eqn. (3.36)). In the limit ũt � ωr,
equation (3.18) reduces to ũa = − 1

3Vs. In this case,
the power coefficient becomes CP = 16/27, which is the
familiar ‘Betz limit’.

Momentum theory can also be applied in the
viscous case, assuming a constant drag to lift ratio
CD

CL
and uniform wind Vs (Stewart, 1976). In his

derivation, Stewart (1976) uses the wake pitch angle β̃i as
the independent variable, maximizing power extraction
while enforcing (3.15) to arrive at

Vs
−ũa

= 2 +
CD

CL
sec2 β̃i

2
(

tan β̃i − CD

CL

)

+ sec β̃i

 tan β̃i(
tan β̃i − CD

CL

) +

(
CD

CL

)2

sec2 β̃i

4
(

tan β̃i − CD

CL

)2


1
2

(3.19)

which reduces to (3.18) in the inviscid case.

Equations (3.15) and (3.19) can be used to form a
table of optimum ũa and ũt versus ωr/Vs, and equation
(3.14) can the be used to find the blade loading, Γ.
However, these results suffer a few limitations. First,
equation (3.14) is only valid in the limit of an infinite
number of blades. For a 3-bladed turbine, say, a
‘circulation reduction factor’ (a.k.a. the ‘Prandtl tip
factor’) must be included in (3.14). The lifting line
wake model automatically accounts for this circulation
reduction factor. Second, this momentum method does
not natively handle features such as a hub or duct,
which again are automatically handled in the lifting
line model. Finally, this formulation is limited to the
assumption that CD/CL is constant. Since CD actually
is constant for a family of airfoils with varying camber,
assuming CD/CL is constant implicitly assumes chord
length optimization to hold CL constant as well. In
practical design, the blade outline may be chosen for
structural reasons, in which case this method fails. Thus,
it is preferable to employ lifting line theory natively in
the turbine optimization.

3.5 Hybrid approach

Momentum theory considerations are now used
to formulate a hybrid lifting-line/momentum-theory
optimization procedure. This results in a procedure
that is capable of optimizing both propellers and
turbines using the same code! As with classical turbine
momentum theory, the restriction is that this method is
only valid in the case of uniform inflow: Va(r) = Vs.

In creating this ‘Hybrid’ method, we seek to
preserve two salient features of momentum theory:
First, momentum theory provides the ‘design constraint’
(3.16), which implicitly enforces the wake to be constant-
pitch, as desired in the uniform-inflow case. In the
discrete lifting-line formulation, equation (3.16) becomes

∂u∗a(i)

∂u∗t (i)
= −ωrc(i) + 2u∗t (i)

Vs + 2u∗a(i)
(3.20)

which is the general turbine design constraint. The
problem now is how to incorporate this constraint into
the lifting line optimization equations (3.5) or (3.6). This
is accomplished in the way that the partial derivatives{
∂u∗

a

∂Γ ,
∂u∗

t

∂Γ ,
∂V ∗

∂Γ

}
are evaluated.

The second salient feature of momentum theory
is that the induced velocities are independent of the
circulation at other radii. This is actually recovered in
the lifting line formulation in the limit of a large number
of blades (which is not surprising, since the actuator disk
model used in momentum theory simply is the limit of
an infinite number of infinitesimally-loaded lifting lines).
Consider the horseshoe influence functions used in the
lifting line model, ū∗a and ū∗t . Careful examination of
the equations in (Lerbs, 1952) shows that for a large
number of blades, the horseshoe influence matrices are
nearly diagonal. That is, for a large number of blades,
one can reasonably make the approximations

ū∗a(m,i) ≈ 0 (for m 6= i)

ū∗t (m,i) ≈ 0 (for m 6= i)

u∗a(i) ≈ ū∗a(i,i) Γ(i)

u∗t (i) ≈ ū∗t (i,i) Γ(i) (3.21)

In the limit of an infinite-bladed rotor (i.e. an actuator
disk), the off-diagonal terms become zero and equations
(3.21) become exact. Practically, Z > 50 blades
yields this result to O(10−5) for any reasonably fine
discretization (say M > 10 panels).

Furthermore, in the infinite-bladed case, the
circumferentially-varying component of the (Lerbs,
1952) equations is zero, so the induced velocities (2.6)
are equal to the circumferential average velocities (3.14).
As a point of inter-model consistency, Epps (2013) shows
that the lifting line model must include the assumption
of locally-constant-pitch wake horseshoes such that (2.6)
and (3.14) are indeed equal in the infinite-bladed case.
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This modeling assumption is required in the turbine
application in order to recover the classical actuator disk
results for power coefficient versus tip speed ratio.

Momentum theory equations (3.14) along with lifting
line approximations (3.21) lead to the following set of
hybrid assumptions: For m = i,

∂u∗a(m)

∂Γ(i)

(
=

∂u∗
a(m)

∂u∗
t (m)

∂u∗
t (m)

∂Γ(i)

)
=

∂u∗
a(i)

∂u∗
t (i) ū

∗
t (i,i) (3.22a)

∂u∗t (m)

∂Γ(i)
= ū∗t (i,i) (3.22b)

∂u∗a(m)

∂Γ(i)
Γ(m)

(
=

∂u∗
a(m)

∂u∗
t (m)

∂u∗
t (m)

∂Γ(i) Γ(m)

)
=

∂u∗
a(i)

∂u∗
t (i)u

∗
t (i)

(3.22c)
∂u∗t (m)

∂Γ(i)
Γ(m) = u∗t (i) (3.22d)

∂V ∗(m)

∂Γ(i)
=

(
sinβi(i)

∂u∗a(i)

∂u∗t (i)
+ cosβi(i)

)
ū∗t (i,i)

(3.22e)

and each is taken as 0 for m 6= i. Recall, the derivative
∂u∗

a(i)
∂u∗

t (i) is evaluated using (3.20). Equations (3.22a),
(3.22c), and (3.22e) are simple applications of the chain
rule of calculus, with their final forms having made use
of equations (3.22b) and (3.22d). Equations (3.22b) and
(3.22d) are analytically consistent with (3.14) for a large
number of blades.

The essential feature of momentum theory, which is
readily obvious in (3.15) but is buried in the derivations
of (3.14) and (3.16), is the assumption that the induced
velocity is perpendicular to the inflow. Essentially what
equations (3.20) and (3.22) do is constrain the lifting line
method to achieve the same flow perpendicularity that
is built into the momentum model

(tanβi ≡)
Vs + u∗a
ωr + u∗t

≈ −u
∗
t

u∗a

regardless of the number of blades. Equations (3.20) and
(3.22) are analogous to the Betz condition for propeller
optimization (3.3), which enforces flow perpendicularity
in the propeller design case (again regardless of the
number of blades). Since ‘Hybrid’ equations (3.20) and
(3.22) enforce the Betz condition (3.3) of constant pitch
wake, the ‘Hybrid’ method is only valid in the uniform
inflow case.

3.5.1 Hybrid propeller optimization

Using these assumptions, the system of equations for
the propeller design optimization problem (3.5) becomes

(Vs + u∗a(i))rc(i)

+
∂u∗

a(i)
∂u∗

t (i)u
∗
t (i)rc(i)

+ 1
2CD(i)c(i)∂V

∗(i)
∂Γ(i) [ωrc(i) + u∗t (i)]rc(i)

+ 1
2CD(i)c(i)V ∗(i)[ū∗t (i,i)]rc(i)

+ λ1[ωrc(i) + u∗t (i)]

+ λ1u
∗
t (i)

− λ1
1
2CD(i)c(i)∂V

∗(i)
∂Γ(i)

[
Vs + u∗a(i)

]
− λ1

1
2CD(i)c(i)V ∗(i)[ū∗a(i,i)]

= 0 for i = 1 . . .M

∑
m

[ω rc(m) + u∗t (m)]Γ(m)4rv(m)

−
∑
m

1
2CD(m)c(m)V ∗(m)[Vs + u∗a(m)]4rv(m)

= Ts/(ρZ) (3.23)

The ‘Hybrid’ propeller optimization method solves
(3.23) using a Newton solver.

In the inviscid case, (3.23) yields

− λ1

rc(i)
≈
Vs + u∗a(i) +

∂u∗
a(i)

∂u∗
t (i)u

∗
t (i)

ωr(i) + 2u∗t (i)

≈ Vs + 2u∗a(i)

ωr(i) + 2u∗t (i)
− u∗a(i)

ωr(i) + 2u∗t (i)
− u∗t (i)

Vs + 2u∗a(i)

(3.24)

which, to the leading order is consistent with Betz
condition for the propeller (3.3).

3.5.2 Hybrid turbine optimization

The analogous system of equations for the turbine is

(Vs + u∗a(i))

+
∂u∗

a(i)
∂u∗

t (i)u
∗
t (i)

+ 1
2CD(i)c(i)∂V

∗(i)
∂Γ(i) [ωrc(i) + u∗t (i)]

+ 1
2CD(i)c(i)V ∗(i)[ū∗t (i,i)]

= 0 for i = 1 . . .M (3.25)

Equation (3.25) can be arrived at from (3.23) by setting
λ1 = 0 and removing the thrust constraint, or it
may be derived directly from (3.6), (3.8), (3.20), and
(3.22). Momentum theory for the inviscid case (3.17)
is directly recovered from (3.25). The ‘Hybrid’ turbine
optimization method solves (3.25) using a Newton solver.
This is actually implemented in the same code as the
‘Hybrid’ propeller method, with λ1 = 0 and the thrust
constraint equation removed.
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3.5.3 Robust turbine optimization

As part of this investigation, several numerical
implementations of system (3.25) were studied to
determine if anything could be done to enhance the
stability and robustness of the code. Although details
of these numerical studies will not be presented, it is
worth noting that one much more robust numerical
implementation was found. This version of system (3.25)
is formed by multiplying each equation by (Vs + 2u∗a(i))
to arrive at

(Vs + 2u∗a(i))(Vs + u∗a(i))

− (ωrc(i) + 2u∗t (i))(u∗t (i))

+ (Vs + 2u∗a(i)) 1
2CD(i)c(i)∂V

∗(i)
∂Γ(i) [ωrc(i) + u∗t (i)]

+ (Vs + 2u∗a(i)) 1
2CD(i)c(i)V ∗(i)[ū∗t (i,i)]

= 0 for i = 1 . . .M (3.26)

This is embodied in the ‘Robust’ turbine method, which
solves (3.26) using a Newton solver. This was found to
be the most stable and robust turbine optimization code
that was able to replicate momentum theory. One can
see readily that for CD = 0 and u∗t � Vs, (3.26) implies
u∗a ≈ − 1

3Vs, which is consistent with momentum theory.

As with the ‘Hybrid’ turbine optimization method
(3.25), the ‘Robust’ turbine optimization method (3.26)
is restricted to the case of uniform inflow: Va(r) = Vs.

3.5.4 A note on the uniform inflow restriction

Note that the axial inflow speed Va(r) has been
changed to Vs in optimization equations (3.23), (3.24),
(3.25), and (3.26) to explicitly remind the reader that
the ‘Hybrid’ and ‘Robust’ optimization methods are only
valid in the uniform inflow case: Va(r) = Vs.

The assumptions that lead to this uniform flow
restriction are quite subtle and will be summarized here:
Equations (3.15) and (3.16) are true if and only if the
induced velocity is perpendicular to the total inflow
velocity. Equations (3.14) and (3.3) are true if and only
if the wake is constant pitch. It can be shown that the
induced velocity is perpendicular to the inflow (3.15) if
and only if the wake is constant pitch (3.3) (Kerwin and
Hadler, 2010).

Momentum theory derivations often start by
assuming that the induced velocity is perpendicular
to the inflow (3.15). Recall, this assumption implies
that the wake is constant pitch (3.3). The ‘Hybrid’
and ‘Robust’ methods follow the momentum theory
assumptions that (3.14)-(3.16) are true; these lead
to ‘Hybrid’ method assumptions (3.20)-(3.22), which
ultimately lead to the optimization equations (3.23)-
(3.26). Thus, any rotor optimized using the ‘Hybrid’
method will effectively enforce a constant pitch wake
(3.3), regardless of whether the inflow is uniform or not.

In the uniform inflow case, enforcing the Betz
condition (3.3) yields the optimum propeller. However,

in the non-uniform inflow case, a propeller should be
optimized such that the Lerbs criterion (3.4) is true, not
the Betz condition (3.3). Thus, the ‘Hybrid’ method fails
in the case of propeller design for non-uniform inflow.

This failure calls into question the validity of the
‘Hybrid’ method for turbine optimization in the non-
uniform inflow case. Given that the ‘Hybrid’ method
is invalid for propeller optimization in non-uniform
inflow, it stands to reason that the ‘Hybrid’ method
also is invalid for turbine optimization in non-uniform
inflow. The authors have no knowledge of an extended
momentum theory for the optimization of turbines
in non-uniform inflow, and it seems that turbine
optimization using momentum theory always assumes
uniform inflow (Manwell et al, 2009; Burton et al, 2001;
Hansen, 2008, e.g.).

Determining a general turbine optimization method
for non-uniform inflow remains ongoing work. As
stated above, one means of accomplishing this would
be a genetic algorithm to find the optimum circulation
distribution. Alternatively, the method might be to
search for the optimum wake pitch distribution (perhaps
starting with the constant pitch distribution produced
by the ‘Robust’ method, and then perturbing that pitch
distribution iteratively).

In publicly-released versions of OpenProp v3,
propeller design optimization is achieved via either
the ‘LL-Linear’ or ‘LL-Newton’ methods, which both
admit non-uniform inflow and both solvers yield the
same converged results (the difference being a tradeoff
between computational speed and stability). Turbine
optimization is achieved via the ‘Robust’ method, which
is restricted to the uniform inflow case.
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3.6 Summary of methods

The following table summarizes the models and
numerical methods developed herein.

Table 1: Summary of design optimization methods
(where ‘LL’ stands for ‘Lifting Line’, and ‘Mom. Theory’
stands for momentum theory). The ‘Lerbs’, ‘LL-Linear’,
‘LL-Newton’, ‘Hybrid’, and ‘Robust’ methods were
implemented in the OpenProp v3.0 numerical design
code (Epps and Kimball, 2013).

Wake Opt. Numerical
Name model eqn. method
Propeller methods
‘Lerbs’ Classical (3.4) Linear system
‘PLL’ Classical (3.10) Linear system
‘OpenProp v2.4’ Classical (3.10) Linear system
‘LL-Linear’ Present (3.10) Linear system
‘LL-Newton’ Present (3.10) Newton solver
‘Hybrid’ Present (3.23) Newton solver
Turbine methods
‘Mom. Theory’ n/a (3.19) Analytic
‘LL-Newton’ Present (3.12) Newton solver
‘Hybrid’ Present (3.25) Newton solver
‘Robust’ Present (3.26) Newton solver

The differences in the propeller optimization methods
are subtle. Both PLL and OpenProp v2.4 employ
the vortex-lattice-based optimization equations (3.10),
and they only differ from ‘LL-Linear’ in their wake
models. ‘LL-Newton’ employs the same wake model
and optimization equations as ‘LL-Linear’, but it is
formulated as a Newton solver for better numerical
stability. The ‘Hybrid’ propeller method is based on the
hybrid set of optimization equations (3.23), which were
developed in §3.5.

For numerical stability, all turbine codes developed
herein employ the Newton solver formulation. The
‘LL-Newton’ turbine code is (of course) the turbine
analog of the ‘LL-Newton’ propeller code, and similarly,
the ‘Hybrid’ turbine code is the turbine analog of the
‘Hybrid’ propeller code. Finally, the ‘Robust’ method is
analytically-equivalent to the ‘Hybrid’ turbine method,
but it is a much more robust formulation.

In completing this work, the first author considered
several additional permutations of these methods, such
as the propeller analog of the ‘Robust’ turbine code,
or not including tanβi in the Newton solver. Also,
an alternative set of hybrid assumptions is discussed in
Appendix A. Unfortunately, these permutations either
resulted in codes with reduced numerical stability or
codes that did not converge to physically realistic results.
The methods listed in Table 1 represent the best of the
many implementations considered by the author.

The first author has implemented the ‘LL-Linear’
and ‘LL-Newton’ propeller optimization methods and
the ‘Robust’ turbine optimization methods in OpenProp

versions 3.0 and beyond. While the ‘Hybrid’ method
successfully demonstrates the link between the propeller
and turbine theories, it is not as numerically robust as
these other methods.

3.7 Non-dimensionalization

The equations above were derived in dimensional
form, as the customary means of non-dimensionalization
differ between propeller and turbine theory. The non-
dimensionalization employed herein, which is largely
taken from propeller theory is as follows. Given a
dimensionally-consistent set of fluid density ρ, reference
speed Vs, rotor radius R (and diameter D = 2R),
the other flow parameters are non-dimensionalized as
follows. All velocities are normalized by Vs, radii by
R, chord lengths by D, and

Js =
Vs
nD

(advance coefficient) (3.27)

λ =
ωR

Vs
=

π

Js
(tip-speed ratio) (3.28)

KT =
T

ρn2D4
(thrust coefficient) (3.29)

KQ =
Q

ρn2D5
(torque coefficient) (3.30)

CT =
T

1
2ρV

2
s πR

2
(thrust coefficient) (3.31)

CQ =
Q

1
2ρV

2
s πR

2
(torque coefficient) (3.32)

CP =
ωQ

1
2ρV

3
s πR

2
= λCQ (power coefficient) (3.33)

G =
Γ

2πRVs
(circulation) (3.34)

where the rotation speed is n (rev/s) or ω = 2πn (rad/s).
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4 Optimization examples and validation
4.1 Propeller parametric design study

As an example parametric design study, several
hubless, five-bladed propellers are designed to give the
same thrust coefficient, CT = 0.512, for a range of
advance coefficients. In this example, Va(r)/Vs = 1,
Vt(r) = 0, and M = 40. Circulation was optimized
using each of the methods listed in Table 1 for both
the inviscid and viscous cases. In the inviscid case
(CD = 0), chord lengths are optimized for each propeller
with CL,max(r) = 0.2. In the viscous case, we assumed
CD = 0.008 and used the blade outline given in Table 2.

Table 2: Blade outline used for viscous study.
r/R 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000
c/D 0.2002 0.2274 0.2531 0.2743 0.2878 0.2913
r/R 0.8000 0.9000 0.9500 0.9750 0.9875 1.0000
c/D 0.2817 0.2410 0.1962 0.1480 0.0988 0.0259

Figure 6 shows the results of this parametric study.
The dashed upper limit ηi = 0.8970 is the ideal efficiency
given by 1D momentum (actuator disk) theory,

ηi =
2

1 +
√

1 + CT
(4.1)

This efficiency is indeed reached in the limit Js → 0
in the inviscid case (upper curves). In the viscous case
(lower curves), efficiency approaches zero in the limit
Js → 0, as expected. In the limit Js � 1, results for
the inviscid and viscous cases converge, which provides
a third check.

Qualitatively, the results in Fig. 6 are representative
of a typical parametric study with all parameters fixed
except for rotation rate. The advance coefficient Js
reaches zero in the limit of infinite rotation rate, in
which case the blades are conceptually smeared into an
actuator disk. In the inviscid case, η → ηi as Js → 0 for
all propeller optimizers, as expected (see Fig. 6(a)). The
circulation distribution is nearly constant (Fig. 6(b)),
which is consistent with actuator disk theory. On
the other hand, as Js increases, ω decreases, and
the circulation increases to maintain the same thrust.
This increase in circulation brings about an increase in
torque, which decreases the efficiency of the propeller, as
reflected in Fig. 6(a).
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Figure 6: (a) Efficiency and (b) circulation of 5-
bladed propellers optimized for each advance coefficient
as shown. Circulation results are from the inviscid case.
The latter four design methods listed in Table 1 show
perfect agreement, and they also compare favorably to
the ‘Lerbs criterion’ based method.

Figure 6 shows that all four Lagrange multiplier
methods programmed by the author agree, namely:
‘OpenProp v2.4’, ‘LL-Linear’, ‘LL-Newton’ , and
‘Hybrid’. Comparing ‘OpenProp v2.4’ with ‘LL-Linear’
shows that the choice of wake model has little effect
on the propeller design results; the major effect of the
present wake model is to improve numerical stability,
such that propeller design may be performed without
artificially “repairing" the induced velocities, as is done
in ‘OpenProp v2.4’ (Epps, 2010b). Comparing ‘LL-
Linear’ with ‘LL-Newton’ shows that the choice of
numerical solution method has no effect on the converged
design results, thus validating the numerical methods.
Comparing ‘LL-Newton’ with ‘Hybrid’ shows that the
hybrid design optimization method developed in §3.5
yields correctly-optimized propellers. This validates the
hybrid method in the propeller case.

Since this example is for a propeller in uniform inflow,
the Lerbs criterion (3.4) theoretically yields the optimum
propeller efficiency in the inviscid case. Figure 6 shows
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that while the Lagrange multiplier methods all yield
circulation distributions slightly favoring the tip (as
compared to the Lerbs circulation distributions), the
computed efficiencies are in close agreement with the
Lerbs theoretical maximum.

The original intent of this example was to
compare the results in Figure 6 with the ‘PLL’
results reported in (Coney, 1989, Figs. 2.4 and 2.5).
However, for this example, Coney computed the
horseshoe influence functions using the lightly-loaded
approximation (βwake = β), whereas moderately-loaded
theory (βwake = βi) was employed to create Figure 6.
Thus, the ‘Lerbs’ and ‘LL-Linear’ codes were run again,
this time employing the lightly-loaded model, and these
results are shown in Figure 7. This figure shows nearly
perfect agreement between the circulation predicted
by ‘LL-Linear’ and ‘PLL’. Perfect agreement is also
observed in the efficiencies, so these data are not shown.
This provides validation of the present methods versus
the industry standard code, ‘PLL’.
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Figure 7: Circulation of 5-bladed propellers optimized
for each advance coefficient (assuming inviscid and
‘lightly-loaded’), showing nearly perfect agreement
between ‘LL-Linear’ and ‘PLL’.

4.2 Turbine parametric design study

Turning our attention to the horizontal-axis turbine
application, we now consider a parametric design study
in which several turbines are designed to maximize
power extraction for a range of tip-speed ratios. In this
example, we consider both infinite-bladed (Z = 100) and
finite-bladed (Z = 3) cases, assuming uniform inflow
(Va/Vs = 1, Vt = 0), M = 80 panels, inviscid flow
(CD = 0), and a blade root radius of Rhub/R = 0.1.
No hub image is used in this study.

Figure 8 shows power coefficient versus tip-speed
ratio for each of the turbines designed in the inviscid,
infinite-bladed case. Momentum theory is shown as
the solid line, and the well-known Betz Limit of CP =
16/27 ≈ 0.5926 is reached in the limit of infinite tip speed
ratio. Each of the three turbine optimization methods

were employed in this study, and good agreement is
observed between the ‘Hybrid’ and ‘Robust’ methods.
The power coefficients computed by the ‘Hybrid’ and
‘Robust’ methods nearly replicate momentum theory;
the small discrepancy is due to the finite root radius
(Rhub/R = 0.1), which was necessary for numerical
stability of the ‘Hybrid’ and ‘LL-Newton’ codes.

Taken together, Figures 6 and 8 demonstrate that the
‘Hybrid’ method is capable of optimizing both propellers
and turbines. Thus, the ‘Hybrid’ method provides the
link between propeller lifting line theory and turbine
momentum theory.

Figure 8 also shows that while both the ‘Hybrid’
and ‘Robust’ methods replicate momentum theory,
the turbines designed using the vortex-lattice-based
‘LL-Newton’ method have noticeably lower power
coefficients. The reason for this deficiency is illustrated
in Figure 9, which shows the circulation and induced
velocities for two turbines designed with λ = 6, CD = 0,
and blade number Z as shown. For Z = 100, the
‘Hybrid’ and ‘Robust’ methods agree with momentum
theory, as expected.
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Figure 8: Power coefficient for turbines optimized for
each tip speed ratio, with Z = 100, Rhub/R = 0.1, and
CD = 0. The ‘Hybrid’ and ‘Robust’ methods agree with
momentum theory, whereas the ‘LL-Newton’ method
under-performs the others.

Figure 9b shows that contrary to momentum theory,
the ‘LL-Newton’ method results in u∗a/Vs ≈ − 1

2 .
It is well-known from actuator disk theory that the
optimal axial induction is u∗a/Vs ≈ − 1

3 , which strikes
the optimal balance between allowing mass to flow
through the disk and extracting power from this
mass. Physically speaking, while an axial induction of
u∗a/Vs ≈ − 1

2 extracts more power per unit mass than
u∗a/Vs ≈ − 1

3 , this higher induction reduces the mass flow
rate through the disk, thereby decreasing overall power
extraction. That equations (3.12) result in u∗a/Vs ≈ − 1

2
is readily apparent in the infinite-bladed case, since
then approximations (3.21) become exact and the result
follows. Thus, it is now evident why traditional vortex-
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lattice-based turbine optimization yields deficient power
coefficients.

Results for the finite-bladed case (Z = 3) are also
shown in Figure 9. With Z = 3, the ‘Robust’
code yields nearly the same induced velocities as the
Z = 100 case, but the circulation is now altered to
produce these induced velocities with the finite number
of blades. Thus, these optimization methods are
actually optimizing induced velocity, and the circulation
distribution just serves as a convenient independent
variable in the derivation of the equations.
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Figure 9: (a) Circulation and (b) induced velocities
versus radius for a turbine designed with λ = 6, CD = 0,
Rhub/R = 0.1 (but no hub image), and blade number as
shown.

The effects of blade number and viscous losses are
shown in Figure 10. Again, we consider both infinite-
bladed (Z = 100) and finite-bladed (Z = 3) cases, and
we assume Va/Vs = 1, Vt = 0, M = 80, and no hub
image. Here, we consider both the inviscid case (CD =
0), as well as viscous cases assuming CD/CL = 0.01 or
0.02, as shown. In the viscous cases, chord is adjusted
each iteration to hold CL constant via (2.2). In order
to better match with momentum theory (which assumes
zero hub radius), we set Rhub/R = 0.005.

Figure 10 shows very good agreement between the
‘Robust’ method and momentum theory for the three
drag coefficients shown. For finite drag coefficient, there

is an optimum tip speed ratio for which power coefficient
is maximized. For finite blade number, the power
coefficient is always lower than the infinite bladed case.
In the limit λ→∞, the Z = 3 results converge with the
Z = 100 results, as expected.

Since the codes developed herein are based on the
rotor lifting line model, the required blade circulation
is computed for each case, regardless of blade number
or drag coefficient, with no circulation reduction factor
needed. This allows for seamless design and analysis of
optimized horizontal axis turbines.
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Figure 10: Power coefficient for turbines optimized for
each tip speed ratio using the ‘Robust’ method, with
Rhub/R = 0.005, M = 80, and uniform inflow, with Z
and CD/CL as shown. Upper curves for Z = 100 agree
with momentum theory (solid line), and corresponding
lower curves for Z = 3 show the effect of blade number.
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5 Rotor geometry and analysis
The rotor design procedure results in a converged set

of {Γ0, V ∗0 , u∗a0 , u
∗
t0 , βi0 , ū

∗
a0 , ū

∗
t0 , CL0 , CD0 , c}, where

the subscript 0 denotes the design point. From here,
the 3D blade geometry can be determined (see §5.1 and
§5.2), or the off-design performance can be analyzed (see
§5.3). Note that since CL0

and βi0 are known for the
design condition, the blade geometry does not need to be
determined to analyze the off-design performance. The
only assumption required for the off-design performance
analysis is that CL = CL0

when βi = βi0 .

5.1 Rotor blade geometry

Typically in the rotor design process, a lifting surface
or panel method code is used to determine the full
3D blade geometry that is required to produce the
radial load distribution determined by the lifting line
optimization algorithm. Another input to the blade
design procedure is a starting geometry, which can be
estimated from the lifting line model as follows. In
§5.2, lifting surface geometry corrections are offered for
the propeller case, such that a more accurate starting
geometry can be estimated.

The lifting line model assumes that the full 3D
rotor geometry is built from 2D section profiles that are
scaled and rotated according to the chord length and the
design-point lift coefficient and inflow angle {c, CL0 , βi0}.
The camber scaling is such that the ideal lift coefficient of
the section equals desired lift coefficient, and the (pitch)
rotation is such that the angle of attack is set to the ideal
angle of attack. Employing the ideal angle of attack
provides shock-free loading, prevents leading edge flow
separation, and mitigates cavitation inception.

A given 2D section profile includes camber f̃(x/c)/c,
ideal angle of attack α̃I , and ideal lift coefficient C̃LI

,
which all scale linearly with the camber ratio, f̃0/c
(Abbott and Doenhoff, 1959). The desired scaling is such
that CL0 = CLI

and α0 = αI ,{
CL0 , α0,

f0

c

}
=
CL0

C̃LI

·
{
C̃LI

, α̃I ,
f̃0

c

}
(5.1)

The pitch angle of the blade section is then fixed at

θ0 = βi0 + α0 (5.2)

These geometry-performance relations can easily be
inverted to infer an assumed performance for a given
propeller geometry {f0/c, θ0}, in which case{

CL0
, α0,

f0

c

}
=
f0/c

f̃0/c
·
{
C̃LI

, α̃I ,
f̃0

c

}
(5.3)

It is assumed that CL = CL0
when α = α0 (i.e. when

βi = βi0 = θ0 − α0).

5.2 Lifting-surface geometry corrections

It is well known that due to flow curvature,
thickness/load coupling, and viscous effects, a propeller
built according to (5.1) and (5.2) will not have
the desired performance, and lifting-surface geometry
corrections must be employed if a physical prototype is
to be built and tested.

Lifting-surface geometry corrections are required for
both the construction of physical prototypes as well
as the analysis of an actual 3D propeller geometry.
Morgan et al (1968) give corrections to the camber
and ideal angle of attack required to construct the
3D blade from 2D lifting-line results. Given the
loading at the design point, (5.1) can be used to find{

(CL0
)2D, (α0)2D, (f0/c)

2D
}
. Then, the required 3D

propeller geometry
{

(θ0)3D, (f0/c)
3D
}

is:

(f0/c)
3D

= kc (f0/c)
2D

(α0)
3D

= ka (α0)
2D

+ kt · BTF (5.4)

(θ0)
3D

= βi0 + (α0)
3D

where kc is the camber correction due to flow curvature
(0.8 < kc < 3.5), ka is the ideal angle correction due to
flow curvature (1 < ka < 3.5), kt ·BTF is the ideal angle
correction due to thickness (0 < kt < 1.8), and BTF is
the blade thickness fraction (projected thickness at the
propeller axis normalized by diameter). Morgan et al
(1968) provide tables of these correction factors versus
(r, βi, Z, and Expanded Area Ratio).

Alternatively, given the full 3D propeller geometry{
(θ0)3D, (f0/c)

3D
}
, equation (5.4) can be inverted to

infer the 2D section performance,

(f0/c)
2D

= (1/kc) (f0/c)
3D

(CL0)2D =
(f0/c)

2D

f̃0/c
C̃LI

(5.5)

(α0)
3D

= ka
(f0/c)

2D

f̃0/c
α̃I + ktBTF

It is is now assumed that CL = (CL0
)2D and α = (α0)

3D

when βi = βi0 = (θ0)3D − (α0)3D. The nominal case (of
no geometry corrections) is recovered by setting kc = 1,
ka = 1, kt = 0, in which case (5.1), (5.2), and (5.3) apply
in the performance analysis.

5.3 Rotor performance analysis

The off-design performance of a propeller can
be estimated using the following method, which is
consistent with the design method described in §3 as
well as the geometric representations in §5.1 and §5.2.
Together, these form a unified design and analysis
platform that can be used for preliminary, parametric
design studies.
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Each rotor operating state is defined by the inflow
profile {Va, Vt}, rotation rate, ω, and unknown
parameters {V ∗, α, CL, Γ, u∗a, u∗t , βi, ū∗a, ū∗t }.
Since there are M blade sections, there are 7M +
2M2 unknowns and a system of as many non-linear
equations that determine the operating state of the rotor.
The method presented herein provides this system of
equations, as well as a numerical approach for solving
them in the lifting line code.

The required equations for V ∗, Γ (in terms of CL),
u∗a, u∗t , βi, ū∗a, and ū∗t are given in §2. As shown in
Figure 2, the angle of attack is α = θ − βi. In the
case of a controllable-pitch rotor with pitch offset θp,
the total pitch of the blade section is θ(r) = θ0(r) + θp,
so the angle of attack is α = θ0 + θp − βi. Whence,
α − α0 = θp + βi0 − βi. Thus, inflow angle βi0 forms
a reference angle, at which it is assumed that the blade
section develops lift coefficient CL = CL0

.

In the design-analysis case, βi0 is known from the
design loading, and CL0 can be computed using (2.2).
In the geometry-analysis case, CL0

, α0, and thus βi0 can
be deduced from equations (5.3) or (5.5).

The lift and drag polars can be computed using the
following model, as illustrated in Figure 11. Defining
∆α = α− α0 [rad], the lift and drag coefficients are

CL = CL0 + dCL

dα ∆α

− dCL

dα (∆α−∆αstall) · F (∆α−∆αstall)

+ dCL

dα (−∆α−∆αstall) · F (−∆α−∆αstall)
(5.6)

CD = CD0

+A · (∆α−∆αstall) · F (∆α−∆αstall)

+A · (−∆α−∆αstall) · F (−∆α−∆αstall)

− 2A · (−∆αstall) · F (−∆αstall) (5.7)

where the auxiliary function F (x) = 1
π arctan(Bx) + 1

2
has limits F (x→ −∞)→ 0 and F (x→∞)→ 1. Here:
∆αstall = 8 π

180 [rad] is the assumed stall angle; B = 20

is a stall sharpness parameter; A =
2−CD0
π
2−∆αstall

is the

drag coefficient post-stall slope; and dCL

dα is the lift curve
slope (taken as 2π unless otherwise specified). Thus
CL ≈ CL0

+ dCL

dα (α−α0) before stall and approximately
constant post stall. The drag coefficient is approximately
constant until stall and then rises to the canonical value
of 2 when the inflow is normal to the blade. This type of
model is used in the lifting-line aircraft dynamics code
ASWING (Drela, 1999).

Since (5.6) models CL(α−α0) explicitly, the lift curve
slope can be set to account for the finite aspect ratio of
the rotor blades. In the present model, the lift curve
slope is approximated as that of an elliptically-loaded
wing

dCL
dα

=
2π

1 + 2/AR (5.8)

where the aspect ratio of the wing (span2/area) can
be formulated as 2(semi-span)2/semi-area. Thus, for a
rotor blade

AR =
2(R−Rhub)2∫ R
Rhub

c(r) dr
(5.9)

Equations (5.6) through (5.9) offer the flexibility
to change the stall angle, lift curve slope, and drag
coefficient to more accurately model foil sections of
moderate thickness. Furthermore, they could be
replaced altogether by tabulated experimental data or
by lift and drag polars computed by a 2D foil solver code,
such as VLM2D (Kerwin, 2007) or XFOIL (Drela, 1989).
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Figure 11: Lift coefficient, CL, and drag coefficient,
CD, versus net angle of attack, α − α0, for the (a)
propeller and (b) turbine cases, with dCL

dα = 2π and on-
design specifications CL0

= ±0.5 and CD0
= 0.05. The

vertical dashed lines at |α − αI |stall = ±8 deg indicate
the stall angle of attack.

The numerical solution method is as follows. The
equations of state can be decoupled by considering two
state vectors: X = {V ∗,∆α,CL,Γ, u∗a, u∗t } and Y =
{βi, ū∗a, ū∗t }, and the decoupled system can be solved
using a Newton solver configured to drive the following
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residual vector to zero.

R =



V ∗ −
√

(Va + u∗a)2 + (ωr + Vt + u∗t )2

∆α − (θp + βi0 − βi)
CL − CL(CL0 ,∆α)
Γ −

(
1
2CLV

∗c
)

u∗a −
(

[ū∗a] · [Γ]
)

u∗t −
(

[ū∗t ] · [Γ]
)


(5.10)

In order to drive the residuals to zero, the desired change
in the state vector, dX, is found by solving

0 = R + J · dX

where the Jacobian is formed as usual, J(i,j) = ∂R(i)
∂X(j) .

The updated state vector is then Xnew = Xcurrent+dX.

Between solver iterations, {βi, ū∗a, and ū∗t } are
updated, and iteration continues until convergence of
the entire system. For each operating state, the thrust,
torque, and efficiency are easily calculated.

This method is essentially that of the blade element
momentum (BEM) method, but it offers the advantage
that the induced velocities are computed from the vortex
lattice and thus, better reflect the load distribution at
the lifting line. The key assumption is that the blade
develops lift CL0

and drag CD0
when the inflow angle is

βi = βi0 . The lift and drag coefficients for other angles
of attack are given by 2D polars, as in BEM.

6 Analysis examples and validation
6.1 Propeller parametric design study

We now continue with the example propeller
parametric design study presented in section 4.1. Here,
we present the off-design performance analysis, assuming
dCL

dα = 2π and ignoring viscous effects (CD = 0).
Chord lengths were optimized for each propeller, with
CL,max(r) = 0.2. The on-design efficiency of each
propeller in this parametric study is shown in Figure 12
‘-H-’, which replicates the data in Figure 6.

Figure 12 also shows the off-design performance
curves for several of the propellers designed in this
study. Using this information, the performance of these
propellers can be examined over the entire operational
profile of a ship, such as 0.512 ≤ CT ≤ 0.812 (or the
equivalent KT = π

8CT · J2
s ). This operating envelope is

shaded in gray in Figure 12.

While prior lifting line codes are typically only
used to determine the on-design efficiency, the present
unified design-analysis method can be used to seamlessly
determine an optimized propeller design and the
associated performance curve. This can be quite useful
in preliminary design studies, when the designer may
know a range of ship CT values. This off-design
performance prediction can tell the designer if the
propeller is likely to operate efficiently over its entire
operational range.
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Figure 12: Thrust and eficiency of optimized 5-bladed
propellers: ‘- -’ actuator disc efficiency; ‘-N-’ required
thrust coefficient KT = π

8CT · J2
s on design; ‘-H-’

efficiency on design; ‘–’ off-design performance curves
for propellers with design Js = 0.2, 0.6, 1.0, 1.4, and 1.8.
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6.2 DTMB propeller 4119 design replica

David Taylor propeller 4119 (designed by Denny
(1968)) is a free-running propeller with a nearly ideal
circulation distribution, fair blades, and moderate
thickness. Its performance has been well characterized
by many workers (Jessup, 1989, e.g.). Here, we design
a 4119 replica, given its design specifications: Z = 3,
Js = 0.833, KT = 0.15, Va/Vs = 1, and Vt = 0.
Here, M = 40 is used, and the lift curve slope (5.8)
was calculated to be dCL

dα = 3.1606. Viscous forces are
considered, with CD = 0.008 and the blade outline given
in Table 3.
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Figure 13: (a) Design circulation distribution
for a DTMB propeller 4119 replica, and (b) off-
design performance curves. OpenProp 3.0 (‘LL-Linear’
method) results agree with PBD code (Kimball, 2001)
and data from (Jessup, 1989). The red dashed line is
the result using dCL

dα = 2π, showing the affect of not
properly accounting for the lifting surface effects in the
performance analysis.

The circulation distribution is plotted in Figure 13a.
The OpenProp 3.0 (‘LL-Linear’) design agrees well
with the lifting line design code PLL (Coney, 1989),
thus validating the present implementation against the
industry standard code. Both lifting-line codes agree
well with the lifting surface analysis of PBD (Kimball,
2001) and with the experimental data from (Jessup,

1989). This indicates that both the magnitude and
distribution of circulation determined by the ‘LL-Linear’
method are correct. In addition, the OpenProp 3.0
results with 40 panels agree with those of 20 panels,
indicating that the solution is well converged with 20
panels.

Figure 13b shows good agreement between the
performance curve predicted by the present method
(OpenProp 3.0) and the experimental data from
(Jessup, 1989). This demonstrates that if the on-design
circulation distribution is accurate, then the off-design
performance is also accurately predicted by the method
in §5.3. Notably, this analysis method does not require
knowledge of the actual 3D geometry.

Figure 13b also shows the effect of the choice of lift-
curve slope. The performance analysis was repeated with
dCL

dα = 2π (i.e. ignoring lifting-surface effects in the off-
design performance analysis), and these data are shown
as a red dashed line. These results make sense in light of
the fact that for Js less than the advance coefficient at
the design point, there are positive net angles of attack,
more lift, and thus more thrust and torque. If the lift
curve slope is assumed to be 2π as in 2D theory, then
the propeller develops more lift (and hence higher KT

and KQ) than the case where a reasonable dCL

dα < 2π is
estimated from (5.8). By setting dCL

dα using (5.8), the
slope of the performance curves dKT

dJs
and dKQ

dJs
agree

well with experimental data, making the performance
analysis accurate for a wide range of advance coefficients.

6.3 DTMB propeller 4119 geometry analysis

The performance of propeller 4119 was also estimated
from the actual propeller geometry, which is given in
Table 3. This propeller employs blade sections with
‘NACA a=0.8’ meanlines, for which f̃0/c = 0.0679,
α̃I = 1.54◦, and C̃LI

= 1.
r/R c/D P/D f0/c t0/c

0.2000 0.3200 1.1050 0.0143 0.2055
0.3000 0.3625 1.1020 0.0232 0.1553
0.4000 0.4048 1.0980 0.0230 0.1180
0.5000 0.4392 1.0930 0.0218 0.0902
0.6000 0.4610 1.0880 0.0207 0.0696
0.7000 0.4622 1.0840 0.0200 0.0542
0.8000 0.4347 1.0810 0.0197 0.0421
0.9000 0.3613 1.0790 0.0182 0.0332
0.9500 0.2775 1.0770 0.0163 0.0323
1.0000 0.0020 1.0750 0.0118 0.0316

Table 3: DTRC propeller 4119 geometry

Figure 14a compares the on-design circulation
distribution computed using the present geometry
analysis method both with and without the (Morgan
et al, 1968) lifting surface geometry corrections. While
the analysis without the lifting surface corrections
grossly over-predicts the loading, use of the (Morgan
et al, 1968) corrections result in a circulation distribution
that more closely resembles the measured data. For
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reference, the ‘OpenProp 3.0 replica’ from Figure 13 is
also included. The data in Figure 14a confirm the well-
known fact that lifting surface corrections are required to
accurately analyze the performance of a marine propeller
using the lifting-line model. Several other lifting surface
corrections were coded and tested for both this case and
propeller 4381 (see §6.4) (Eckhardt and Morgan, 1955;
van Manen, 1957; Cox, 1961; Kerwin and Leopold, 1963).
The (Morgan et al, 1968) corrections yielded the most
accurate results and thus are used exclusively herein.
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Figure 14: Analysis of the actual DTMB propeller
4119 geometry both without lifting surface geometry
corrections ‘- -’; and with the (Morgan et al, 1968)
corrections ‘–’: (a) Circulation distribution, and (b)
performance curves. For reference, the ‘OpenProp 3.0
replica’ from Figure 13 is also shown, ‘-•-’.

Figure 14b shows relatively good agreement between
the predicted loads and the measured data when the
(Morgan et al, 1968) corrections are used. This
figure also illustrates that the thrust and torque
coefficient predictions heavily depend on the lifting
surface geometry corrections, whereas the efficiency is
well estimated regardless of the geometry corrections
employed. Thus, the KT and KQ differences are due
to the camber/pitch corrections, which is a limit of the
lifting line method.

Interestingly, the slopes of the performance curves,
dKT /dJs and dKQ/dJs, are nearly the same, whether
or not the lifting surface corrections are used. This
demonstrates that the lifting surface corrections serve to
map the given 3D propeller geometry to the performance
of the rotor at its design point. The off-design
performance predictions parallel one another, regardless
of the lifting surface corrections employed.

It is important to reiterate that the ‘OpenProp 3.0
replica’ is a propeller designed to match the 4119
design point. The present design method (§3.3) resulted
in the correct load distribution at the design point,
and the analysis method (§5.3) predicted the correct
performance for a wide range of advance coefficients.
This design and analysis was performed in “design
world”, with no knowledge of the “real world” geometry
required to give such performance. Due to the
limitations of the lifting line method, the geometry for
the ‘OpenProp 3.0 replica’ that would be predicted by
(§5.2) would be somewhat different than the actual 4119
propeller geometry. Similarly, the performance analysis
of the actual 4119 geometry yielded results that were
somewhat different than the measured performance.
Thus, the limitation of the lifting line method is in
mapping from the “design world” performance of a rotor
to the “real world” geometry of this rotor, and visa versa.

6.4 DTMB propeller 4381 geometry analysis

Another example performance analysis from given
propeller geometry is now illustrated using U.S. Navy
propeller 4381, whose geometry is given in Table 4. This
propeller was selected based on available experimental
data for comparison, as well as concurrent efforts in
modeling this propeller during crashback maneuvers.
DTMB 4381 is a 5-bladed propeller of moderate
expanded area and no rake or skew. Detailed geometric
characteristics can be found in (Chesnakas et al, 2004).
This propeller employs blade sections with ‘NACA
a=0.8’ meanlines, for which f̃0/c = 0.0679, α̃I = 1.54◦,
and C̃LI

= 1. The lift curve slope (5.8) is dCL

dα = 3.6703.
r/R c/D P/D f0/c t0/c

0.2000 0.1740 1.2600 0.0312 0.2500
0.3000 0.2280 1.3500 0.0369 0.1560
0.4000 0.2750 1.3600 0.0348 0.1070
0.5000 0.3130 1.3400 0.0307 0.0770
0.6000 0.3380 1.2800 0.0244 0.0570
0.7000 0.3480 1.2100 0.0189 0.0420
0.8000 0.3340 1.1400 0.0147 0.0310
0.9000 0.2810 1.0700 0.0122 0.0240
0.9500 0.2190 1.0300 0.0133 0.0260
0.9800 0.1530 1.0100 0.0164 0.0370
0.9900 0.1150 1.0100 0.0211 0.0500
1.0000 0.0000 1.0000 0.0280 0.0700

Table 4: DTRC propeller 4381 geometry
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Figure 15: Performance analysis of DTMB propeller
4381, with and without the (Morgan et al, 1968)
geometry corrections. Thrust and torque compare well
to experimental data from (Greeley and Kerwin, 1982)
and panel method analysis from (Brizzolara et al, 2010).

The results in Figure 15 parallel those of Figure 14:
namely, the efficiency is fairly accurate when predicted
both with or without the lifting surface geometry
corrections. While the analysis without the lifting
surface corrections grossly over-predictsKT andKQ, use
of the geometry corrections results in loads that more
closely resemble the measured data. This emphasizes
that the present lifting line methods can be used
to accurately simulate real propeller performance in
parametric design studies, but the limitations of the
method in simulating an actual geometry is an inherent
limit to the lifting line model, and final geometry
computations should use a lifting surface method or
panel method. Figure 15 shows that the panel method
results of (Brizzolara et al, 2010) much more accurately
agree with the experimental data, as expected. However,
the lifting line design forms a very good starting
geometry for a lifting surface design procedure, since
the final geometry requires only small changes from the
lifting-line geometry to match the required performance.

6.5 Turbine parametric design study

In §4.2, a parametric design study was performed
in which several turbines were optimized to maximize
power extraction at each of a range of tip-speed ratios.
We now continue the example presented in Figure 9, in
which we considered both infinite-bladed (Z = 100) and
finite-bladed (Z = 3) cases, assuming uniform inflow
(Va/Vs = 1, Vt = 0), M = 80 panels, and a blade root
radius of Rhub/R = 0.005. No hub image was used.

Figure 16 shows power coefficient versus tip-speed
ratio for each of the turbines designed in the inviscid case
(CD = 0). Momentum theory is shown as the solid line,
and the well-known Betz Limit of CP = 16/27 ≈ 0.5926
is reached in the limit of infinite tip speed ratio. The off-
design performance of the propellers designed for λ = 2,
5, and 8 is also shown. Although the chord distribution

does not affect the on-design performance in the inviscid
case, but it does affect the loading changes at off-design
tip-speed ratios. The turbines shown in Figure 16 were
designed with |CL|max = 1, which is a typical turbine
section lift coefficient. As expected, for any given tip
speed ratio (e.g. λ = 3), the off-design performance
curves (solid lines) never exceed the performance of the
turbine optimized for that tip speed ratio. Thus, the
design optimization and off-design performance analysis
methods are self-consistent and form a unified design and
analysis approach.
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Figure 16: Power coefficient of several turbines at their
design point ‘- -◦- -’, as well as the off-design performance
of selected turbines ‘–•–’.

6.6 Turbine design example

Figure 17 shows the performance curves for a viscous
case (CD0

= 0.01), with three blades and all other
parameters the same as above. Three turbines are
shown, which were designed with |CL|max = 0.5, 1,
and 2. Figure 17a demonstrates that although a
higher design-point lift coefficient yields better on-design
performance, the performance gains may be limited to
a narrow range of tip-speed ratios. This is due to the
shorter chord length blades in the high-CL0

case, which
are more greatly affected by changes in angle of attack
due to tip-speed ratio changes. In this example, the
turbine designed with CL0 = −1.0 strikes a balance
between performance on- and off-design.

The blade outlines shown in Figure 17b are not
reasonable (especially near the root), so a thorough
design study would explore other blade shapes, possibly
to enhance structural rigidity or reduce weight. For any
given blade outline, the parametric design study can be
repeated, finding the optimized load distribution for each
tip speed ratio, and the off-design performance of each
of these turbines.
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Figure 17: (a) Power coefficient for turbines designed
for λ = 5 with CD0 = 0.01 and lift coefficient CL0 as
shown. The dashed curve is the on-design limit of
CD0

/CL0
= 0. The CL0

= −1 turbine strikes a balance
between performance on- and off-design. (b) Blade
outline. (c) 3D rendering of the CL0 = −1 turbine.

7 Summary
A unified lifting line method for the design and

analysis of axial flow propellers and turbines has
been presented. Improvements to the numerical
implementation of the lifting line design approach have
been described and validated. The extension of the
lifting line procedure for analysis for propellers and
turbine performance has been described and validated,
which greatly extends the usefulness of the method in
practice.

This unified method has been shown to be a
foundation method for which additional capabilities are
easily added. Extensions that have been implemented
include: multi-component design, ducted rotor design
and analysis, cavitation analysis, blade stress analysis,
blade geometry generation, and performance analysis of
given geometry. The effect of expanding or contracting
wakes can easily be handled in the lifting line model by
simply computing the horseshoe influence functions (ū∗a
and ū∗t ) using a discretized vortex lattice wake. Effects
such as unsteady inflow and wake roll-up can also easily
be handled in this way.

The method as described can also serve as a
computation engine that can be used in system
design/analysis suites such as: ship propeller parametric
design suites; cavitation and blade strength analysis
marine hydrokinetic turbines; and design of controllable-
pitch propellers and turbines. In addition the methods
describe can serve a basis for more sophisticated tools
such as: coupled blade aeroelastic/fluid interaction
analysis; unsteady analysis of propellers and turbines
including spatially and temporally varying inflow; or
floating offshore wind turbine dynamic models.
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8 Appendix A: alternative hybrid
optimization approach

One might be tempted to use the following
assumptions as an alternative hybrid approach, as these
may be more in line with the lifting line model

∂u∗a(m)

∂Γ(i)
=

∂u∗
a(m)

∂u∗
t (m) ū

∗
t (m,i)

∂u∗t (m)

∂Γ(i)
= ū∗t (m,i) (8.1)

∂V ∗(m)

∂Γ(i)
=
(

sinβi(m)
∂u∗

a(m)
∂u∗

t (m) + cosβi(m)

)
ū∗t (m,i)

which results in the following system of optimization
equations for the propeller case

(Va(i) + u∗a(i))rc(i)4rv(i)

+
∑
m

∂u∗
a(m)

∂u∗
t (m) ū

∗
t (m,i) Γ(m)rc(m)4rv(m)

+
∑
m

1
2CD(m)c(m)

∂V ∗(m)
∂Γ(i) [ωrc(m) + u∗t (m)]rc(m)4rv(m)

+
∑
m

1
2CD(m)c(m)V ∗(m)[ū∗t (m,i)]rc(m)4rv(m)

+ λ1[ωrc(i) + u∗t (i)]4rv(i)

+ λ1

∑
m

ū∗t (m,i) Γ(m)4rv(m)

− λ1

∑
m

1
2CD(m)c(m)

∂V ∗(m)
∂Γ(i)

[
Va(m) + u∗a(m)

]
4rv(m)

− λ1

∑
m

1
2CD(m)c(m)V ∗(m)

[
∂u∗

a(m)
∂u∗

t (m) ū
∗
t (m,i)

]
4rv(m)

= 0 for i = 1 . . .M

∑
m

[ω rc(m) + u∗t (m)]Γ(m)4rv(m)

−
∑
m

1
2CD(m)c(m)V ∗(m)[Va(m) + u∗a(m)]4rv(m)

= Ts/(ρZ) (8.2)

and an analogous system for the turbine case. Indeed,
it was found that propeller optimization via (8.2)
converged to essentially the same answer as the
traditional propeller lifting line approach (3.10) for many
cases. However, the analogous turbine code was unstable
and often crashed.

9 Appendix B: turbine drag treatment
There exists a fundamental difference in the way

that viscous losses are accounted for in lifting line
theory versus momentum theory. In lifting line theory,
CD is assumed constant, regardless of CL, whereas in
momentum theory, the ratio CD

CL
is assumed constant.

(Abbott and Doenhoff, 1959, p.148-150) show that for
any family of airfoils (e.g. NACA 65-series), the camber
ratio (i.e. lift coefficient on design) has little effect on
the minimum section drag coefficient. This supports
the assumption of constant CD, which is why that is
used in deriving the equations herein. Nevertheless, the
optimization equations may be derived assuming CD

CL
=

constant, as will now be shown.

Assuming CD

CL
= constant amounts to implicitly

assuming chord length optimization via equation
(3.1). In that case, the “optimum” chord length
c = 2Γ/(V ∗ CL) is chosen to hold CL and thus CD

CL

constant. This chord length optimization is made
implicit by eliminating c from rotor optimization
equations (3.7) and (3.8) via 1

2V
∗ CDc = CD

CL
Γ, which

clearly follows from above. With this implicit chord
length optimization, the thrust and torque become
(again assuming Vt = 0 without loss of generality)

T

ρZ =

M∑
m=1

{
[ωrc + u∗t ]− CD

CL
[Va + u∗a]

}
Γ4rv (9.1)

Q

ρZ =

M∑
m=1

{
[Va + u∗a] + CD

CL
[ωrc + u∗t ]

}
Γ rc4rv (9.2)

Now, the turbine design problem is to find the
optimum circulation distribution, Γ, such that power
extraction is maximized for a given inflow (Va, ω)
and viscous losses (CD

CL
). We again employ the hybrid

assumptions (3.22) as well as the turbine constraint
(3.20), but now with CD

CL
= constant, the turbine

optimization equations (3.6) become{
[Va(i) + u∗a(i)] + CD

CL
[ωrc(i) + u∗t (i)]

}
+
{
∂u∗

a(i)
∂u∗

t (i)u
∗
t (i) + CD

CL
u∗t (i)

}
= 0 for i = 1 . . .M (9.3)

Comparing (9.3) and the original hybrid optimization
equations (3.25), it is evident that these two methods
are equivalent when chord optimization via (3.1) is
employed.

However, the constant CD formulation given in §3
affords the flexibility for other chord length optimization
methods (Epps et al, 2011, e.g.), or for optimizing blade
loading for a fixed blade outline.
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