
OpenProp: An Open-source Design Tool for Propellers and Turbines

B. P. Epps1 (SM), M. J. Stanway1 (SM), and R. W. Kimball2 (AM)
1: Graduate student, Massachusetts Institute of Technology, Cambridge, MA
2: Professor, Maine Maritime Academy, Castine, ME

An open-sourced computational tool for the design and analysis of optimized propellers and turbines is presented. The
design tool, called OpenProp, is based on well-proven vortex lattice lifting line methods utilized by the US Navy as
well as commercial designers. This paper presents the methodology and numerical implementation of OpenProp, with
multiple examples of designs, including actual parts fabricated from the code using 3D printing technology.

INTRODUCTION

OpenProp is a suite of open-sourced propeller and turbine design
codes written in the MATLAB R� programming language (Kimball
2007). The codes are based on the same lifting line propeller
design theory utilized in codes employed by the US Navy for pre-
liminary parametric design of marine propellers (Kerwin 2007).
OpenProp is designed to be a GUI-based user-friendly tool that
can be used by both propeller design professionals as well as
novices in the propeller design field, though basic engineering
knowledge is assumed.

OpenProp began in 2001 with the propeller code PVL developed
by Kerwin as part of his MIT propeller design course notes (Ker-
win 2007). The first Matlab version of this code, MPVL, incorpo-
rated Grahical User Interfaces for parametric design and prelim-
inary bladerow design (Chung 2007). Geometry routines were
later added which interfaced with the CAD program Rhino to
generate a 3D printable propeller (D’epagnier 2007). These prior
codes were capable of designing propellers using a simple Lerb’s
criteria optimizer routine. Using a generalized optimizer routine
implemented by Epps (presented herein), the code was then ex-
tended to design ducted propellers (Stubblefield 2008).

OpenProp utilizes a vortex lattice lifting line representation of
the blades with constant-diameter helical vortices to represent the
blade wakes. The method incorporates a standard wake align-
ment procedure to accurately represent moderate blade loading
and can design both propellers and axial flow turbines using the
same numerical representation. The code also has an analysis ca-
pability to estimate the performance curve of a given design for
use in off-design evaluation. This paper presents the methodol-
ogy of the numerical implementation of both the propeller and
turbine design capabilities. Multiple examples of designs are pre-
sented including validation comparisons and examples of actual
parts fabricated from the code using 3D printing technology. Ex-
amples of both propeller and turbine designs are presented.

The long term goal of the project is to provide a user-friendly,
accurate, and validated open-sourced code which can be used to
design and prototype a variety of propellers and turbines includ-
ing:

• Marine Propellers (free tip, ducted, and multicomponent)
• Marine Hydrokinetic Turbines (free tip, ducted, and multi-

component)
• Hydraulic turbines (propeller type and Kaplan)

2009 Epps 1

Society of Naval Architects and Marine Engineers Propeller/Shafting ‘09 Symposium, Virginia Beach, VA

A team of researchers at MIT, Maine Maritme Academy and Uni-
versity of Maine have contributed to the current OpenProp code.
The code has been validated and demonstrated in both free-tip and
ducted propeller design, and prototype free-tip propellers have
been manufactured via 3D printing from the direct outputs of
OpenProp.

The turbine design implementation is underway and in valida-
tion stages. Work has also been done to add analysis capability
to enable off-design performance prediction for propeller or tur-
bine designs. Coupling with the open-sourced code XFOIL is
also underway, giving the code flexibility in designing and an-
alyzing arbitrary foil shapes. For marine applications, cavita-
tion prediction tools have also been developed utilizing XFOIL
and the pressure distribution predictor. Future additions will
include enhanced CAD and CAM modeling, strength analysis
and coupling with electric motors. Visit the OpenProp website
(http://openprop.mit.edu) for more information.

Data flow
OpenProp uses data structures to store the input parameters, de-
sign, geometry, and operating states of a particular propeller or
turbine design. The data flow is illustrated in figure 1. The input
data (such as propeller diameter, rotation rate, etc.) are defined by
the user either though the GUI or by running a short script; these
input data are organized in the input. data structure. The input.
data is fed into the optimizer subroutine, which determines the
optimum propeller/turbine design, for the input operating condi-
tions: The output of the optimizer is a propeller/turbine design.
data structure. The design. can then be analyzed at off-design
conditions (i.e. at user-specified tip speed ratios) in the analyzer
to determine off-design operating states.. The design. can also
be sent to the crafter, which determines the 3D geometry. and
prepares 3D rapid prototyping files necessary for production of
the propeller/turbine.

geometry. states.

design.

input.

optimizer

analyzercrafter

tip speed

ratios

Figure 1: OpenProp information flow chart

METHODOLOGY

The following is the theoretical foundation and an overview of
the numerical implementation of the OpenProp propeller/turbine
design code . It draws from the theory presented in (Kerwin 2007,
Coney 1989, Carlton 1994).

OpenProp is based on moderately-loaded lifting line theory, in
which a propeller blade is represented by a lifting line, with trail-
ing vorticity aligned to the local flow velocity (i.e. the vector sum
of free stream plus induced velocity). The induced velocities are
computed using a vortex lattice, with helical trailing vortex fila-
ments shed into the wake at discrete stations along the blade. The
blade itself is modeled as discrete sections, having 2D section
properties at each radius. Loads on the blade are computed by
integrating the load on each section of the blade over the length
of the blade. The goal of the propeller or turbine optimization
procedures is to determine the optimum circulation distribution
along the span of the blade, which yields the best performance,
given the inflow conditions and blade 2D section properties.

All formulae in this section are given in dimensional terms. All
formulae are developed for the propeller case, in which G > 0.
For the turbine case, G < 0 automatically produces all necessary
sign changes to model the turbine.

Propeller velocity/force diagram

�i

�
êa

ñ

c̃ s̃

�êr

�

Fi

Fv

F
[Va +u�a]

[�r+Vt +u�t]
êt

V�

Figure 2: Propeller velocity/force diagram, as viewed from the
tip towards the root of the blade. All velocities are relative to a
stationary blade section at radius r.

The velocity/force diagram shown in figure 2 illustrates the veloc-
ities and forces (per unit span) on a 2D blade section in the axial
êa and tangential êt directions. The propeller shaft rotates with
angular velocity w êa, such that the apparent tangential inflow at
a 2D section at radius r is �wrêt . Also shown on figure 2 are
the axial and tangential (swirl) inflow velocities, Va =�Vaêa and
Vt = �Vt êt ; induced axial and tangential velocities, u⇤a = �u⇤aêa
and u⇤t = �u⇤t êt (note that typically u⇤t < 0 when using this def-
inition, so u⇤t actually points in the êt direction); and the total
resultant inflow velocity, V⇤, which has magnitude

V ⇤ =
q

(Va +u⇤a)2 +(wr +Vt +u⇤t)2 (1)

2009 Epps 2

and is oriented at pitch angle,

bi = tan�1

Va +u⇤a
wr +Vt +u⇤t

�

(2)

to the êt axis. Also shown on figure 2 are the angle of attack, a;
blade pitch angle q = bi + a; circulation, G êr; (inviscid) Kutta-
Joukowski lift force, Fi = rV⇤ ⇥ (G êr) ; viscous drag force, Fv,
aligned with V⇤; and total force per unit radius, F = Fi +Fv. The
total force per unit radius can be decomposed into axial and tan-
gential components

Fa = [Fi cosbi�Fv sinbi] (êa) (3)
Ft = [Fi sinbi +Fv cosbi] (�êt) (4)

where the magnitudes of the inviscid and viscous force per unit
radius are

Fi = rV ⇤G (5)

Fv = 1
2 r(V ⇤)2CDc (6)

Assuming the Z blades are identical, the total thrust and torque on
the propeller are

T = Z
Z R

rh

Fadr

= rZ
Z R

rh

[V ⇤Gcosbi� 1
2 (V ⇤)2CDcsinbi]dr (êa) (7)

Q = Z
Z R

rh

rêr⇥Ftdr

= rZ
Z R

rh

[V ⇤Gsinbi + 1
2 (V ⇤)2CDccosbi]rdr (�êa) (8)

where rh and R are the radius of the hub and blade tip, respec-
tively. The fluid-dynamic power acting on the propeller is the
product of torque and angular velocity.

P = Q(�êa) ·w êa

=�rZw
Z R

rh

[V ⇤Gsinbi + 1
2 (V ⇤)2CDccosbi]rdr (9)

where the leading (�) sign indicates that power is being put into
the fluid by the propeller (i.e. the torque resists the motion).

The useful power produced by the propeller is TV•, where V• is
the free-stream speed (i.e. ship speed), and the efficiency of the
propeller is

h =
TV•
Qw

(10)

Turbine representation
In this section, we demonstrate that a turbine can be represented in
the above formulation simply by using a negative circulation, G <
0. If G < 0, then {CL,Fi,u⇤a,u⇤a, f0,a} < 0 as well, via equations
{(11), (5), (14), (15), (33)}.

ĉ
ŝ

n̂

�i

êa

�

Fi

Fv

F

V�
[Va +u�a]

[�r+Vt +u�t]
êt

�êr
�as drawn

{�, Fi, f0, �} < 0

Figure 3: Turbine velocity/force diagram, as viewed from the tip
towards the root of the blade. All velocities are relative to a sta-
tionary blade section at radius r.

The turbine velocity/force diagram is shown in figure 3, with
{G,Fi, f0,a} < 0 as drawn. In this case, the turbine still rotates
with angular velocity w êa, but the direction of the circulation is
reversed (as drawn). This amounts to |G|(�êr) = G êr with G < 0.

With, {G,Fi} < 0, equations (3) and (4) yield the axial and tan-
gential forces in the turbine case:

Fa = [|Fi|cosbi +Fv sinbi] (�êa) (as drawn)
= [Fi cosbi�Fv sinbi] (êa) (eqn. 3)

Ft = [|Fi|sinbi�Fv cosbi] (êt) (as drawn)
= [Fi sinbi +Fv cosbi] (�êt) (eqn. 4)

Similarly, the total thrust

T = rZ
Z R

rh

[V ⇤|G|cosbi + 1
2 (V ⇤)2CDcsinbi]dr (�êa)

(as drawn)

= rZ
Z R

rh

[V ⇤Gcosbi� 1
2 (V ⇤)2CDcsinbi]dr (êa) (eqn. 7)

torque

Q = rZ
Z R

rh

[V ⇤|G|sinbi� 1
2 (V ⇤)2CDccosbi]rdr (êa)

(as drawn)

= rZ
Z R

rh

[V ⇤Gsinbi + 1
2 (V ⇤)2CDccosbi]rdr (�êa)

(eqn. 8)

and power

P = rZw
Z R

rh

[V ⇤|G|sinbi� 1
2 (V ⇤)2CDccosbi]rdr

(as drawn)

=�rZw
Z R

rh

[V ⇤Gsinbi + 1
2 (V ⇤)2CDccosbi]rdr (eqn. 9)

are predicted correctly by equations (7), (8), and (9) when G < 0
for the turbine. (Note that P > 0 indicates that power is being
extracted from the fluid by the turbine.) Therefore, equations (3),

2009 Epps 3

(4), (7), (8), and (9) can be used for either a propeller (G > 0) or
turbine (G < 0) case. Furthermore, the same vortex lattice code
can be used for both the propeller and turbine cases! All subse-
quent equations herein are given using the propeller sign conven-
tions.

Section lift and drag coefficients
In the design optimizer, the lift coefficient of each 2D blade sec-
tion is given in terms of its loading by

CL =
Fi

1
2 r(V ⇤)2c

=
2G

(V ⇤)c
(11)

The section drag coefficient, CD, is a constant specified by the
user.

During the circulation optimization procedure, the chord, c, is
chosen in order to restrict the lift coefficient to a given maximum
allowable absolute value, CLmax , such that

CL = CLmax ·
G
|G| (12)

c =
2|G|

(V ⇤)CLmax
(13)

It is important to restrict the maximum lift coefficient in order to
prevent flow separation and cavitation at the leading edge of the
propeller/turbine blade. The absolute values in (12) and (13) are
necessary for the turbine case, in which G < 0 and CL = �CLmax ,
but c > 0.

Vortex lattice formulation
OpenProp employs a standard propeller vortex lattice model to
compute the axial and tangential induced velocities, {u⇤a,u⇤t }. In
the vortex lattice formulation, a Z-bladed propeller is modeled as
a single representative radial lifting line, partitioned into M pan-
els. A horseshoe vortex filament with circulation G(i) surrounds
the ith panel, consisting of helical trailing vortex filaments at the
panel endpoints (rv(i) and rv(i + 1)) and the segment of the lift-
ing line that spans the panel. The induced velocities are com-
puted at control points on the lifting line at radial locations rc(m),
m = 1 . . .M, by summing the velocity induced by each horseshoe
vortex

u⇤a(rc(m))⌘ u⇤a(m) =
M

Â
i=1

G(i)ū⇤a(m, i) (14)

u⇤t (rc(m))⌘ u⇤t (m) =
M

Â
i=1

G(i)ū⇤t (m, i) (15)

where ū⇤a(m, i) and ū⇤t (m, i) are the axial and tangential velocity
induced at rc(m) by a unit-strength horseshoe vortex surrounding
panel m. Since the lifting line itself does not contribute to the
induced velocity,

ū⇤a(m, i) = ūa(m, i)� ūa(m, i+1) (16)
ū⇤t (m, i) = ūt(m, i)� ūt(m, i+1) (17)

where ūa(m, i) and ūt(m, i) are the axial and tangential velocities
induced at rc(m) by a unit-strength helical vortex filament at rv(i),
with the vector direction of the circulation approaching the lift-
ing line by right-hand rule. These velocities are computed using
the approximations by Wrench (1957) for a constant-pitch helical
vortex line:

For rc(m) < rv(i):

ūa(m, i) =
Z

4prc
(y�2Zyy0F1)

ūt(m, i) =
Z2

2prc
(y0F1)

For rc(m) > rv(i):

ūa(m, i) =� Z2

2prc
(yy0F2)

ūt(m, i) =
Z

4prc
(1+2Zy0F2)

where

F1 ⇡
�1

2Zy0

✓

1+ y2
0

1+ y2

◆0.25

0

B

B

@

1
U�1�1+

1
24Z

h

9y2
0+2

(1+y2
0)1.5 + 3y2�2

(1+y2)1.5

i

· ln
�

�

�

1+ 1
U�1�1

�

�

�

1

C

C

A

F2 ⇡
1

2Zy0

✓

1+ y2
0

1+ y2

◆0.25
0

B

@

1
U�1�

1
24Z

h

9y2
0+2

(1+y2
0)1.5 + 3y2�2

(1+y2)1.5

i

· ln
�

�1+ 1
U�1

�

�

1

C

A

U =

0

B

@

y0

⇣

p

1+ y2�1
⌘

y
⇣

q

1+ y2
0�1

⌘

exp
✓

p

1+ y2�
q

1+ y2
0

◆

1

C

A

Z

y =
rc

rv tanbw

y0 =
1

tanbw

and bw is the pitch angle of the helical vortices in the wake. Con-
sistent with moderately-loaded lifting line theory, we set bw = bi
in order to ‘align’ the wake with the local flow at the blade.

For an infinite-bladed propeller, these equations become

For rc(m) < rv(i):

ūa(m, i) =
Z

4prv tanbw

ūt(m, i) = 0

2009 Epps 4

For rc(m) > rv(i):

ūa(m, i) = 0

ūt(m, i) =
Z

4prc

The infinite blade approximation is made when comparing the
vortex lattice model in OpenProp to the performance of an actua-
tor disc representation of a propeller or turbine.

Hub effects
Following Kerwin (2007), the hub is modeled as an image vortex
lattice, with the image trailing vortex filaments having equal and
opposite strength as the real trailing vortex filaments and radii

ri(i) =
r2

h
rv(i)

(18)

The axial velocity influence function, ūa(m, i), then becomes dif-
ference between the axial velocity induced by a trailing vortex
at rv(i) and that induced by a trailing vortex at ri(i). The same
modification is made for ūt(m, i).

The image vorticity is shed through the trailing surface of the hub
and rolls up into a hub vortex of radius, ro. The drag due to the
hub vortex is

Dh =
rZ2

16p

ln
✓

rh

ro

◆

+3
�

[G(1)]2 (�êa) (19)

For practical purposes, it suffices to set rh
ro

= 1, which sets the
logarithm to zero.

Propeller optimization subroutine
Following Coney (1989), the propeller optimization problem is
to find the set of M circulations of the vortex lattice panels that
produce the least torque for a required thrust. The torque (8) is

Q = rZ
M

Â
m=1

�

[Va +u⇤a]G+ 1
2V ⇤CDc[wrc +Vt +u⇤t]

rc4rv

(20)

where {r,Z,w} are constants and {G, u⇤a, u⇤t , V ⇤, c, Va, Vt , CD,
rc, 4rv} are evaluated at each control point radius, rc(m), in the
summation. Note that {G,u⇤a,u⇤t ,V ⇤,c} are functions of the circu-
lation distribution, G. The thrust (7) is required to be the specified
thrust, Ts

T = rZ
M

Â
m=1

�

[wrc +Vt +u⇤t]G� 1
2V ⇤CDc[Va +u⇤a]

4rv

�Hflag · rZ2

16p

ln
✓

rh

ro

◆

+3
�

[G(1)]2 = Ts (21)

where Hflag is set to 1 to model a hub or 0 for no hub.

The circulation optimization is performed using the method of
the Lagrange multiplier from variational calculus. An auxiliary
function,

H = Q+l1(T �Ts) (22)

is formed, where l1 is the unknown Lagrange multiplier which
introduces the thrust constraint (21). Clearly, if T = Ts, then a
minimum value of H coincides with a minimum value of Q. To
find this minima, the partial derivatives with respect to the un-
knowns are set to zero

∂H
∂G(i)

= 0 for i = 1 . . .M (23)

∂H
∂l1

= 0 (24)

which results in a system of M + 1 equations for as many un-
knowns {G(i = 1 . . .M),l1}.

The partial derivatives of G,l1,u⇤a,u⇤t ,V ⇤,and c with respect to
{G(i),l1} are

∂G(m)
∂G(i)

=

(

0 (m 6= i)
1 (m = i)

,
∂l1

∂l1
= 1

∂{u⇤a(m),u⇤t (m)}
∂G(i)

= {ū⇤a(m, i), ū⇤t (m, i)}

∂V ⇤(m)
∂G(i)

= 1
2 (V ⇤)�1

2(Va +u⇤a)
∂u⇤a(m)
∂G(i) +

2(wrc +Vt +u⇤t)
∂u⇤t (m)
∂G(i)

!

= sin(bi(m)) ū⇤a(m, i)+ cos(bi(m)) ū⇤t (m, i)

∂c(m)
∂G(i)

=
2

V ⇤(m)CLmax

∂G(m)
∂G(i)

· G(m)
|G(m)| �

c(m)
V ⇤(m)

∂V ⇤(m)
∂G(i)

All other partial derivatives are zero or ignored.

The system of equations {(23), (24)} is non-linear, so an iterative
approach must be used to solve them. Note that the system state
is characterized by G and flow parameters {u⇤a, u⇤t , bi, ū⇤a, ū⇤t , V ⇤,
c}, which all must be self-consistent for the state to be physically-
realistic. That is, equations {(14), (15), (2), (16), (17), (1), (13)}
must all hold, given G. During each solution iteration, flow pa-
rameters

n

u⇤a,u⇤t , ū⇤a, ū⇤t ,V ⇤, ∂V ⇤
∂G ,c, ∂c

∂G ,l1

o

are frozen in order to
linearize {(23), (24)}. The linear system of equations, with the
linearized unknowns marked as {Ğ, l̆1}, is

2009 Epps 5

∂H
∂G(i)

= rZ
M

Â
m=1

Ğ(m) ·
✓

ū⇤a(m, i)rc(m)4rv(m)+
ū⇤a(i,m)rc(i)4rv(i)

◆

+rZVa(i)rc(i)4rv(i)

+rZ
M

Â
m=1

1
2CD

h

∂V ⇤(m)
∂G(i) c(m)+V ⇤(m) ∂c(m)

∂G(i)

i

· [wrc(m)+Vt(m)+u⇤t (m)]rc(m)4rv(m)

+rZ
M

Â
m=1

1
2CDV ⇤(m)c(m)[ū⇤t (m, i)]rc(m)4rv(m)

+rZl1

M

Â
m=1

Ğ(m) ·
✓

ū⇤t (m, i)4rv(m)+
ū⇤t (i,m)4rv(i)

◆

+rZl̆1[wrc(i)+Vt(i)]4rv(i)

�rZl̆1

M

Â
m=1

1
2CD

h

∂V ⇤(m)
∂G(i) c(m)+V ⇤(m) ∂c(m)

∂G(i)

i

· [Va +u⇤a(m)]4rv

�rZl̆1

M

Â
m=1

1
2CDV ⇤(m)c(m)[ū⇤a(m, i)]4rv

�Hflag · ∂G(1)
∂G(i) ·l1

rZ2

8p

ln
✓

rh

ro

◆

+3
�

Ğ(1)

= 0 for i = 1 . . .M (25)

∂H
∂l1

= rZ
M

Â
m=1

Ğ(m) · [wrc +Vt +u⇤t (m)]4rv

�rZ
M

Â
m=1

1
2CDV ⇤(m)c(m)[Va +u⇤a(m)]4rv

�Hflag · rZ2

16p

ln
✓

rh

ro

◆

+3
�

G(1) · Ğ(1)

�Ts

= 0 (26)

The system {(25), (26)} is solved for the now linear {Ğ, l̆1}, and
the new Ğ is used to update the flow parameters. First, induced
velocities {u⇤a,u⇤t } are updated via {(14), (15)} and ‘repaired’ by
smoothing the velocities at the blade root and tip. This minor
smoothing is critical to enable the entire system of equations to
converge, because the alignment of the wake and the vortex in-
fluence functions which are fed into the next solution iteration
are very sensitive to irregularities in the induced velocities. This
smoothing is reasonable in the vortex-lattice model, since it in-
troduces no more error than ignoring hub or tip vortex roll-up, or
other flow features. Next, the wake angle, bi, is updated via (2),
and the non-linear terms are updated:

n

ū⇤a, ū⇤t ,V ⇤, ∂V ⇤
∂G ,c, ∂c

∂G ,l1

o

.
This process is repeated until convergence of the entire system,
yielding an optimized circulation distribution and a physically-
realistic design operating state. Initial values of

n

bi,V ⇤, ∂V ⇤
∂G , ∂c

∂G

o

are computed with {u⇤a,u⇤t } = 0. The Lagrange multiplier is ini-
tialized at l1 =�1, and the section chord lengths at c = 0.

The generalized circulation optimizer described herein was im-
plemented in OpenProp by Epps. Stubblefield (2008) validated
the optimizer for unducted and ducted cases against the U.S. Navy
code PLL with good agreement in circulation distribution over a
wide range of duct loadings.

Turbine optimization subroutine
OpenProp optimizes turbine designs based on a vortex-lattice
adaptation of actuator disc theory with swirl and viscous losses.
During the design optimization, flow parameters {G, u⇤a, u⇤t , ū⇤a,
ū⇤t , bi} must be self consistent to define a physically-realistic op-
erating state of the turbine. That is, equations {(14), (15), (16),
(17), (2)} must hold, given G.

In the present optimization scheme, the tangential induced veloc-
ity is set to the actuator disc with swirl (ADS) value

u⇤t ⌘ u⇤t,ADS

The remaining flow parameters {G,u⇤a, ū⇤a, ū⇤t ,bi} are determined
iteratively. Initially setting u⇤a = u⇤a,ADS allows one to start a loop
that computes bi via (2), then {ū⇤a, ū⇤t } via {(16), (17)}. Then,
the circulation distribution is determined by solving the matrix
equation

[ū⇤t] · [G] = [u⇤t,ADS]

for G. Finally, u⇤a is computed via (14), and the loop restarts.
Iteration continues until every state variable has converged.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

Z = 100, CD/CL = 0.00

Z = 100, CD/CL = 0.01

Z = 100, CD/CL = 0.02

Z = 3, CD/CL = 0.00

Z = 3, CD/CL = 0.01

Z = 3, CD/CL = 0.02

Actuator disc theory

Wind turbine data

!

C
P

Figure 4: Power coefficient, CP = P/ 1
2 rV 3

•pR2, versus tip speed
ratio, l = wR

V•
, for optimized turbines. The CP of turbines de-

signed with 100 blades agrees quite well with actuator-disc-with-
swirl-and-viscous-losses theory (Stewart 1976), as shown for
three CD/CL ratios. Performance data of 3-bladed wind turbines
in service, digitized from (Kahn 2006), is also shown.

2009 Epps 6

Using this scheme, OpenProp is able to reproduce the CP vs. l
performance curves from actuator-disc-with-swirl-and-viscous-
losses theory (Stewart 1976), as shown by the (essentially infinite-
bladed) Z = 100 curves in figure 4. An additional check that this
scheme works correctly, which is not depicted in figure 4, is that
for very high tip speed ratios (l > 40), each of the Z = 3 curves
asymptotes to its corresponding Z = 100 curve, as expected.

Clearly, the scheme presented here could be augmented to set
u⇤a ⌘ u⇤a,ADS and solve for whatever u⇤t , etc. is self-consistent with
that. The authors find marginally-worse agreement with actuator
disc theory if this approach is used. One point of ongoing work
is to reformulate the turbine optimization problem in such a way
that does not use actuator disc theory as an input.

Incorrect turbine optimization scheme: One might formulate the
turbine optimization problem statement as follows: Find the set
of M circulations of the vortex lattice panels that produce the least
torque (i.e. the most negative torque, giving the largest power ex-
traction at the specified rotation rate). In other words, solve the
propeller optimization problem with no thrust constraint. How-
ever, this scheme does not yield the largest power extraction pos-
sible (i.e. this scheme does not reproduce actuator disc theory), as
shown in figure 5. The reason for this discrepancy is as follows.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

Actuator disc theory

ADS!based optimizer

Incorrect optimizer

!

C
P

Figure 5: Power coefficient, CP, versus tip speed ratio, l , for
turbines “optimized” by solving the system of equations: ∂Q

∂G(i) =
0 for i = 1, . . . ,M. Here, CD = 0 and Z = 80. Clearly, this scheme
does not reproduce actuator-disc-with-swirl theory.

Consider the propeller optimization problem, with inviscid flow,
CD = 0, and no thrust constraint. Then, the system of equations
for minimizing torque (25) becomes:

0 =rZ
M

Â
m=1

Ğ(m) ·
✓

ū⇤a(m, i)rc(m)4rv(m)+
ū⇤a(i,m)rc(i)4rv(i)

◆

+rZVa(i)rc(i)4rv(i) (27)

for i = 1 . . .M. Since the horseshoe influence matrices {ū⇤a, ū⇤t }
are dominated by their diagonal terms, we can approximate

ū⇤a(m, i)⇡
(

0 (m 6= i)
ū⇤a(m,m) (m = i)

(28)

such that

u⇤a(m)⇡ G(m)ū⇤t (m,m) (29)

The system of equations (27) then becomes M independent equa-
tions (i = 1 . . .M)

0 = rZ · Ğ(i) · [ū⇤a(i, i)rc(i)4rv(i)+ ū⇤a(i, i)rc(i)4rv(i)]
+rZVa(i)rc(i)4rv(i) (30)

which are each satisfied when

u⇤a(i) =� 1
2Va(i) (31)

Actuator disc theory prescribes u⇤a = � 1
3Va for maximum power

extraction. The turbine optimizer formulation presented in this
section does not yield turbine designs with circulation distribu-
tions that extract as much power from the flow as actuator disc
theory with swirl predicts, because solving (27) yields a circula-
tion distribution which produces too much axial induced velocity,
thereby reducing the flow rate through the turbine more than it
should, resulting in less power available for extraction.

Geometry subroutine
Once the design operating state of the propeller/turbine is known,
the geometry can be determined to give such performance. The
3D geometry is built from given 2D section profiles that are
scaled and rotated according to {CL = CL,max,c,bi}, which were
determined as part of the design operating state of the pro-
peller/turbine.

The given 2D section geometry includes foil camber and thick-
ness normalized by the chord, { f̃ /c, t̃/c}, tabulated as a function
of the normalized chordwise coordinate, x/c, as well as the ideal
angle of attack, eaI , and ideal lift coefficient, eCLI . The latter are
defined as

eaI ⌘
1
p

Z p

0

d f̃
dx

dx0

eCLI ⌘ 2
Z p

0

d f̃
dx

cos(x0)dx0

where x = c
2 (1� cos(x0)) defines the angular x0 coordinate (Ab-

bott 1959). Clearly, { f̃ (x), eaI , eCLI} scale linearly with maximum
camber, f̃0 = max[f̃ (x)].

The 2D section lift coefficient is given in terms of the geometry
by

CL = 2p(a�aI)+CLI (32)

In the OpenProp geometry subroutine, the angle of attack of each
blade section is set to its ideal angle of attack (a = aI) in or-
der to prevent flow separation and/or cavitation at the leading

2009 Epps 7

edge of the blade. The lift coefficient of each blade section
then becomes the ideal lift coefficient CL = CLI , by definition.
In order to achieve the desired lift coefficient for a given blade
section,CL = CL,max, the ideal lift coefficient is scaled by scal-
ing maximum section camber. Thus, for a given section profile
with { f̃0, ef , ãI , eCLI}, the desired maximum camber, camber pro-
file, and ideal angle of attack are

{ f0, f ,aI} =
CL,max
eCLI

· { f̃0, f̃ , eaI} (33)

The pitch angle of each blade section is then set to

q = aI +bi (34)

Given the blade 2D section geometry, the OpenProp crafter can
then form 3D renderings or export files for rapid prototyping of
physical parts.

Analyzer subroutine
This section details the analysis of a propeller/turbine operating
at an off-design (OD) tip speed ratio,

lOD =
wODR

V•
(35)

The 2D Section Lift and Drag Coefficients used in the analyzer
subroutine are shown in figure 6. The lift coefficient is given by
CL = 2p(a�aI)±CL,max (eqn. 32) for |a�aI |< |a�aI |stall and
is nearly constant for larger angles of attack. The drag coefficient
at small angles of attack is CD = (CD/CL) ·(2p|a�aI |+CL,max),
where CD/CL is a constant specified by the user; post stall, the
drag coefficient increases linearly until it reaches a value of 2 at
|a �aI | = 90 deg. This type of stall model has been used suc-
cessfully in (Drela 1999).

The net angle of attack is easily computed for a fixed geometry
(i.e. q fixed) by inspection of the propeller velocity diagram (not-
ing that a = aI and bi = bi,design at the design state)

a�aI = bi,design�bi (36)

The Operating States of a propeller or turbine for each given lOD
are computed as follows. An operating state is defined by lOD
and unknown flow parameters {V ⇤, a , CL, G, u⇤a, u⇤t , bi, ū⇤a, ū⇤t },
which all must be self-consistent for the state to be physically-
realistic. That is, equations {(1), (36), (32), (11), (14), (15), (2),
(16), (17)} must all hold, given lOD. Since there are M vortex
panels, there are 7M +2M2 unknowns and a system of 7M +2M2

non-linear equations that govern the state of the system. This sys-
tem is solved in OpenProp using an approach similar to a Newton
solver.

Since the 7M + 2M2 equations are coupled through the parame-
ters {bi, ū⇤a, ū⇤t }, we decouple them by considering two state vec-
tors: X = {V ⇤,a,CL,G,u⇤a,u⇤t }> and Y = {bi, ū⇤a, ū⇤t }>. During

!90 !60 !30 0 30 60 90
!2

!1.5

!1

!0.5

0

0.5

1

1.5

2

)*+)e--e* CL

)*+)e--e* CD

! ! !
2
 [deg]

C
L

,
C

D

!90 !60 !30 0 30 60 90
!2

!1.5

!1

!0.5

0

0.5

1

1.5

2

)*+,-.e CL

)*+,-.e CD

! ! !
4
 [deg]

C
L

,
C

D

Figure 6: Lift coefficient, CL, and drag coefficient, CD, versus net
angle of attack, a�aI , for a propeller (top) and turbine (bottom)
with specifications CL,max = 0.5 and CD/CL = 0.01. The vertical
dashed lines at |a �aI |stall = ±8 deg indicate the stall angle of
attack.

each solution iteration, state vector X is updated, and then Y is
updated; this process repeats until convergence of the entire sys-
tem.

Consider state vector X: It consists of M sets of 6 state variables,
one set per vortex panel. The 6 variables for each vortex panel
are coupled to one another, but not to the other variables in X.
Thus, X can be partitioned into M state vectors, X = {x1, . . . ,xM},
where xm = {V ⇤,a,CL,G,u⇤a,u⇤t }> with each variable evaluated at
rc(m). Each of these state vectors can be updated independently.

Each vortex panel state vector, xm, is updated using a Newton
solver. Define the residual vector for the mth panel as

Rm =

2

6

6

6

6

6

6

4

V ⇤ �
p

(Va +u⇤a)2 +(wODrc +Vt +u⇤t)2

a� (aI +bi,design�bi)
CL� (2p(a�aI)+CLI)
G�

� 1
2CLV ⇤c

�

u⇤a� [ū⇤a] · [G]
u⇤t � [ū⇤t] · [G]

3

7

7

7

7

7

7

5

(37)

where each variable is evaluated at rc(m). In order to drive the
residuals to zero, the desired change in the state vector, dxm, is
found by solving the matrix equation

0 = Rm +Jm ·dxm

2009 Epps 8

where the elements of the Jacobian matrix, Jm, are

Jm(i, j) =
∂Rm(i)
∂xm(j)

The state vector for the next iteration, then, is xnext
m = xcurrent

m +
dxm. By solving one Newton iteration for each of the m =
1, . . . ,M vortex panels, state vector X = {x1, . . . ,xM} is updated.

Given the new X values, Y is updated: bi is updated via (2), and
then {ū⇤a, ū⇤t } are updated via {(16), (17)}. In the next solution
iteration, these new values of Y are used to update X, and so on.
Since the solution scheme updates both X and Y in each iteration,
it accounts for the coupled interaction between all 7M +2M2 un-
known flow parameters and converges on a physically-realistic
operating state of the system.

The system is said to converge when all 6M elements of X have
converged. Since bi is directly related to a and ū⇤a and ū⇤t are
functions of bi, once a converges, this implies that Y has con-
verged as well. For each operating state, the analyzer computes
the propeller/turbine thrust, torque, and power coefficients and
efficiency.

0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

Z = 3, CD/CL = 0.01
λD = 5 turbine performance
Actuator disc theory
Wind turbine data

λ

CP

Figure 7: Power coefficient, CP, versus off-design tip speed ratio,
l , for a turbine designed to operate at lD = 5, with specifications
CD = 0.01 and Z = 3.

Figure 7 shows the power coefficient versus off-design tip speed
ratio performance curve of a turbine with specifications CD/CL =
0.01 and Z = 3, designed to operate at lD = 5. The performance
predicted by the analyzer, ‘•’, agrees with the performance pre-
dicted by the optimizer, ‘N’, at l = 5, and the performance for
higher tip speed ratios compares quite favorably with wind tur-
bine industry performance data (Kahn 2006). For l < 3, the
power coefficient drops precipitously, as the net angle of attack
drops below �8 degrees at many blade sections and the blade
stalls.

Figure 7 also shows the design performance of other turbines with
CD/CL = 0.01 and Z = 3, optimized for selected tip speed ratios,

‘N’. Clearly, if all these turbines are truly optimized, our turbine
optimized for lD = 5 should never outperform a turbine operating
at its design point. The fact that our turbine outperforms the ‘opti-
mized’ turbines at l = 4 and 3 indicates that the turbine optimizer
subroutine is most likely not yielding the best turbines possible.
As previously stated, reformulating the turbine optimization sub-
routine is one focus of ongoing work.

EXAMPLES

Users have the option of working with OpenProp through the
MATLAB command line or the graphical user interface (GUI).
The GUI provides a parametric analysis interface for preliminary
design and a single propeller interface (shown in figure 8) for de-
tail design. Both modes take basic parameters such as the di-
ameter, number of blades, shaft speed, ship speed, and required
thrust. OpenProp generates a vortex lattice model of the propeller
using these inputs, and optimizes the circulation distribution on
this model. Using the parametric and single modes together, the
user can design a propeller or turbine relatively quickly.

Figure 8: OpenProp propeller design graphical user interface

OpenProp’s parametric design mode helps the designer tackle
system-level design problems. Consider the ubiquitous problem
of choosing a shaft speed: the designer may be given motor spec-
ifications and a choice between several gearboxes. His task is
to compare the performance of several possible propeller designs
appropriately matched to the available motor/gearbox combina-
tions. Using the parametric design GUI, the designer can specify
a range of acceptable propeller diameters, shaft speeds, and blade
numbers. The parametric design mode then evaluates the perfor-
mance of a propeller optimized to each of the specified design
points. In this way, the designer can use OpenProp to explore the
design space for a new propeller and choose suitable propeller
specifications.

Once the design point is chosen, the designer then uses the single
propeller design GUI (shown in figure 8) or the MATLAB com-

2009 Epps 9

mand line to perform a more detailed design. The user inputs
the selected system-level design specifications and can choose be-
tween a few options for the foil meanline and thickness profiles.
Optimization can then be performed with or without an estimate
of viscous losses. Once the optimization is completed, OpenProp
produces several text and graphical reports detailing the perfor-
mance and geometry of the design. Since the single propeller
design mode is quite fast (less than one minute on a typical lap-
top computer), users can optimize and evaluate several competing
propeller designs in this step.

OpenProp also produces command file scripts to automatically
generate a NURBS propeller model in Rhino3D. This model can
then be manipulated in Rhino3D, exported to another CAD pro-
gram, or prepared for 3D printing or another computer-aided
manufacturing (CAM) method.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

r/R

G

Figure 9: MIT ROV team propeller. Clockwise from top left:
Non-dimensional circulation (G = G

2pRV•
) versus radius, where

R = 0.06 [m] is the propeller radius and V• = 0.5 [m/s] is the
design ship speed; 3D CAD rendering of the propeller, using the
output geometry from OpenProp; prototype propeller; ROV with
caged propellers.

The MIT Remotely Operated Vehicle (ROV) Team used Open-
Prop to design and 3D print custom optimized propellers for their
entry into the 2008 MATE ROV Competition (see figure 9). Using
the parametric tools, they decided on a motor/gearbox combina-
tion with a shaft speed of 545 rpm. They then used the single
propeller tools to design a four-bladed, 12 cm diameter propeller
that gave 8.75 N of thrust at an advance velocity of 0.5 m/s. They
used the OpenProp output to automatically build a NURBS model
in Rhino3D, then generated a mesh and .stl file for a 3D printer.
Four propellers were printed in an ABS/polycarbonate blend and
ridges were smoothed over with epoxy. The raw printed pro-
pellers at this scale were somewhat flexible, so a better future
approach might be to use the printed piece to make a mold for
a stiffer material. Another alternative would be to lay up glass

or carbon fiber, using the printed piece as a core. The team used
these propellers successfully in pool missions at the ROV compe-
tition, but no performance tests have been done.

Figure 10: Computer rendering, 3D printed model and testing of
OP4148.

D’epagnier (2007) designed and built a propeller to emulate the
performance of the NAVY propeller 4148 (Kinnas 1995) as a test
case for the OpenProp code. Figure 10 shows the propeller as de-
signed and rendered in Rhino, the physical 3D printed propeller,
and the propeller as it was undergoing tests at the tow tank at the
University of Maine at Orono at the time of publication.

OpenProp is a continuing work in progress, but has reached
the level of development where it has been useful to students
not directly involved with the code. It brings the considerable
power of vortex lattice analysis to the fingertips of novice and ex-
pert propeller designers with its friendly GUI and higher-power
command-line interfaces.

CURRENT RESEARCH FOCUS

Efforts currently underway with the OpenProp code development
include improvements to the turbine optimizer and the validation
testing of OpenProp propeller and turbine designs. Future addi-
tions to OpenProp are being planned in the following areas:

• Integration of the 2D foil code XFOIL for arbitrary foil ge-
ometries and inclusion of viscous boundary layer effects,

• Integration of the cavitation bucket generator of Peterson
(2008) into the OpenProp code,

• Addition of multiple blade row design capability,

• Addition of blade strength analysis capability,

• Extension of Blade outputs to other CAD programs such as
SolidWorks, as well as internal generation of 3D Print files.

The goal of the OpenProp suite of codes is to provide accurate and
powerful propeller and axial flow turbine design codes for use by
both novice users and experienced designers. The open-sourced
nature of the code (published under the GNU public License pro-
tocol) is intended to be a public resource to enhance the art of
propeller and turbine design.

2009 Epps 10

ACKNOWLEDGMENTS

This work is supported by the Office of Naval Research
N000140810080, ESRDC Consortium and MIT Sea Grant Col-
lege Program, NA06OAR4170019. In addition, the authors wish
to thank Mr. Robert S. Damus of the Project Ocean, who was
instrumental in securing a fellowship that made some of this re-
search possible.

REFERENCE

Abbott, I. H., and Von Doenhoff, A. E. Theory of Wing Sections.
Dover, 1959.

Carlton, J. S. Marine Propellers and Propulsion. Butterworth-
Heinemann, 1994.

Chung, H.-L. “An enhanced propeller design program based on
propeller vortex lattice lifting line theory”. M.S. thesis, MIT,
2007.

Coney, W.B. “A Method for the Design of a Class of Optimum
Marine Propulsors”. PhD dissertation, Massachusetts Insti-
tute of Technology, Cambridge, MA, September 1989.

D’Epagnier, K.P. “A computational tool for the rapid design and
prototyping of propellers for underwater vehicles”. M.S.
thesis, MIT/WHOI, 2007.

D’Epagnier, K.P.; Chung, H.-L.; Stanway, M.J.; and R.W. Kim-
ball. “An Open Source Parametric Propeller Design Tool”.
Oceans 2007, p. 1-8, October 2007.

Drela, M. “Integrated Simulation Model for Preliminary Aero-
dynamic, Structural, and Control-Law Design of Aircraft.”
AIAA SDM Conference, 99-1394, 1999.

Khan, M.J.; Iqbal, M. T.; and J. E. Quaicoe. “Design Consid-
erations of a Straight Bladed Darrieus Rotor for River Cur-
rent Turbines”. IEEE ISIE 2006, July 9-12, 2006, Montreal,
Quebec, Canada

Kerwin, J.E. Hydrofoils and Propellers. MIT course 2.23 notes,
2007.

Kimball, R.W.; Epps, B.P.; and M.J. Stanway. OpenProp MAT-
LAB code. Open-source at http://openprop.mit.edu

Kinnas, S.A. University/Navy/Industry Consortium on Cavita-
tion of High Speed Propulsors, fifth meeting, June 1st and
2nd, 1995.

Lerbs, H.W. “Moderately Loaded Propellers with a Finite Num-
ber of Blades and an Arbitrary Distribution of Circulation.”
Trans. SNAME, v. 60, 1952.

Peterson, C.J. ”Minimum Pressure Envelope Cavitation Analy-
sis Using Two-Dimensional Panel Method” Masters Thesis,
MIT, June 2008.

Stewart, H.J. “Dual Optimum Aerodynamic Design for a Con-
ventional Windmill”. AIAA Journal, v. 14, no. 11, p. 1524-
1527, 1976.

Stubblefield , J.M. “Numerically Based Ducted Propeller Desgin
using Vortex Lattice Lifting Line Theory”, Masters Thesis,
MIT, June 2008.

Wrench, J. W. “The calculation of propeller induction factors.”
Technical Report 1116, David Taylor Model Basin, Febru-
ary, 1957.

2009 Epps 11

