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ABSTRACT

Propeller blade design for fast ships is often driven by
cavitation constraints. A tradeoff exists, where larger chord
lengths and section thicknesses typically improve cavitation
performance but result in lower efficiency. Typically,
chord lengths are optimized for the design condition (ship
endurance speed), with some specified margin to prevent
cavitation off-design (at maximum ship speed). Cavitation
performance at the maximum speed is considered post-facto,
and blade shape often needs to be modified for cavitation
considerations in high-speed operation.

This paper presents an improved method for blade shape
optimization. The present method simultaneously considers
the cavitation performance at the endurance speed design
point and a maximum speed off-design point, and blade
chord lengths and thicknesses are set to prevent cavitation
at both operational conditions. During the present design
optimization routine, the on-design load distribution is
optimized, and the off-design performance is determined,
such that the chord lengths can be set to a minimum that still
prevents cavitation at both the on- and off-design conditions.

A case study is presented, considering the notional design
of a propeller for the U.S. Navy DDG51 destroyer-class
ship. Propellers designed using standard chord/thickness
optimization procedures are compared to those designed
using the present procedures. Cavitation performance is
compared for the two design methods.
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1.0 INTRODUCTION

We seek a deterministic approach for optimizing propeller
blade chord and thickness in such a way as to maximize
efficiency, provide requisite blade strength, and mitigate
cavitation. For maximum efficiency, one desires zero
chord lengths, since viscous losses scale with chord.
However, structural considerations require finite chord and
thickness, and increasing chord typically improves cavitation
performance as well. So it is apparent that one can not
arbitrarily choose the chord and thickness distributions but
rather needs a deterministic optimization approach.

A number of design procedures exist to choose the chord
and thickness distributions to prevent cavitation at a single
design point, which either involve design tables (e.g. Brockett

(1966)) or curve fits to these tables (e.g. Coney (1989)).
However, these methods fail when multiple design points are
considered. Herein, we consider the problem of optimizing
loading for maximum efficiency at a ship’s 20 knot endurance
speed while optimizing the chord and thickness distributions
to prevent cavitation at both the endurance speed and a 30
knot maximum speed. Since we aim to optimize the design at
an off-design condition, the methods of Brockett (1966) and
Coney (1989) do not apply, and we need a new method to
optimize the blade shape to prevent cavitation.

Herein, we employ propeller lifting line theory for the
design optimization and analysis (§2.0). In §2.3, we develop
an analytic equation to predict the cavitation performance
of each 2D blade section. In §3.0, we develop a design
procedure to optimize blade loading for maximum efficiency
at an endurance speed while mitigating cavitation at a
maximum speed. This procedure is illustrated in §4.0 in
application the DDG51 destroyer-class vessel.

2.0 THEORY

2.1 Propeller lifting-line formulation
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Figure 1: Propeller velocity diagram at radius r.

In moderately-loaded propeller lifting line theory (Lerbs,
1952; Epps, 2010b), a propeller blade is represented by a
vortex line, with trailing vorticity aligned to the local flow
velocity (free-stream plus induced velocity). The induced
velocities are computed using a vortex lattice, with helical
trailing vortex filaments shed at discrete stations along the
blade. The blade is also modeled as discrete vortex panels,
having 2D section properties at each radius. Loads are
computed by integrating the 2D section loads over the span.

Fig. 1 illustrates the velocities and forces (per unit radius)
on a 2D blade section: axial and tangential inflow velocities,
Va and Vt ; axial and tangential induced velocities, u∗a and u∗t ;



and angular velocity ω. The total resultant inflow velocity
has magnitude V ∗ =

√
(Va +u∗a)2 +(ωr+Vt +u∗t )2 and is

oriented at pitch angle βi to the et axis. Also shown on
Fig. 1 are the angle of attack, α; blade pitch angle θ = α+βi;
circulation, Γ; inviscid Kutta-Joukowski lift force, Fi = ρV ∗Γ;
and viscous drag force, Fv =

1
2 ρ(V ∗)2CDc, where ρ is the fluid

density, CD is the section drag coefficient, and c is the chord.

The 3D propeller geometry is built from given 2D section
profiles that are scaled and rotated according to the chord
length and the design point lift coefficient and inflow angle
{c,CLe ,βie} such that CL = CLI = CLe and α = αI at the
(endurance speed) design point:{

CL,αI ,
f0

c

}
=

CLe

C̃LI

·

{
C̃LI , α̃I ,

f̃0

c

}
(2.1)

θ = αI +βie (2.2)

where CLI and αI are the ideal lift coefficient and angle of
attack, and the tilde values are the given profile (Abbott and
Doenhoff, 1959).

The off-design performance of a propeller is computed
using the method of (Epps, 2010a). Each operating state is
defined by the ship speed, Vs, rotation rate, ω, and unknown
parameters {V ∗, α, CL, Γ, u∗a, u∗t , βi, ū∗a, ū∗t }. Since there are
M vortex panels, there are 7M+2M2 unknowns and a system
of as many non-linear equations. This system is solved using
a Newton solver, which drives the following residual vector
to zero (for each blade section).

R =



V ∗ −
√
(Va +u∗a)2 +(ωmrc +Vt +u∗t )2

α − (αI +βie −βi)
CL − CL(α)
Γ −

( 1
2CLV ∗c

)
u∗a −

(
[ū∗a] · [Γ]

)
u∗t −

(
[ū∗t ] · [Γ]

)


(2.3)

where CL(α) ≈ CLe + 2π(α − αI) before stall and
approximately constant post stall. Between solver iterations,
{βi, ū∗a, and ū∗t } are updated. For each operating state, thrust,
torque, and efficiency are easily calculated (Epps et al, 2009).

2.2 Cavitation

The local cavitation number is defined as

σ(r)≡ patm +ρgH− pv
1
2 ρ(V ∗(r))2

(2.4)

with atmospheric pressure patm = 101 kPa, seawater density
ρ= 1025 kg/m3, gravity g= 9.81 m/s2, shaft centerline depth
H, and vapor pressure pv = 2500 Pa. The pressure coefficient
(at radius r and chordwise location x) is

CP(r,x)≡
p(r,x)− (patm +ρgH)

1
2 ρ(V ∗(r))2

(2.5)

Since cavitation may occur when the pressure falls below
the vapor pressure, chord must be made large enough such
that the minimum pressure coefficient (i.e. maximum −CP)
satisfies

[−CP]max ≤ σ (2.6)

(Kerwin and Hadler, 2010).

2.3 An analytic estimate of [−CP]max

In order to develop a deterministic design method that
satisfies (2.6), we require an analytic estimate of [−CP]max.
Employing Bernoulli’s equation, (2.5) can be written as

−CP(x) =
{

q(x)
V ∗

}2

−1 (2.7)

where q(x) is the the total fluid velocity. For a 2D hydrofoil
spanning 0≤ x≤ c, linear theory (with the Lighthill leading-
edge correction) gives

q(x)
V ∗

=

(
1+

ut(x)
V ∗
± uc(x)

V ∗

)√
x

x+ 1
2 r`
±(α−αI)

√
c− x

x+ 1
2 r`

(2.8)
where ut and uc are the perturbation velocities due to
thickness and camber effects, respectively, and r` is the
leading-edge radius.

A typical propeller blade section may be generated using
a NACA ‘a’-series meanline and some thickness distribution.
A NACA ‘a’-series camber line scaled for ideal lift coefficient
CLI has a camber perturbation velocity of uc(x)

V ∗ ≈
1
2

CLI
(1+a) .

The thickness perturbation velocity is proportional to the
thickness ratio, ut (x)

V ∗ ≈ a1τ, where we define τ ≡ t0
c . Typical

values of a1 are 4
π

, 1.20, and 1.18 for the ‘parabolic’, ‘NACA
65A010’, and ‘NACA66’ thickness forms, respectively. The
leading edge radius is proportional to the square of the
thickness ratio, r`

c = ρ`τ
2, where ρ` is the leading edge radius

ratio for unit thickness ratio.

Thus, for the upper surface (suction side)

−CP(x)≈

{
A1

√
x

x+ 1
2 r`

+A2

√
c− x

x+ 1
2 r`

}2

−1 (2.9)

A1 ≡ 1+a1τ+
1
2

CLI

(1+a)
(2.10)

A2 ≡ α−αI (2.11)

and for the lower surface (pressure side)

−CP(x)≈

{
A3

√
x

x+ 1
2 r`

+A4

√
c− x

x+ 1
2 r`

}2

−1 (2.12)

A3 ≡ 1+a1τ− 1
2

CLI

(1+a)
(2.13)

A4 ≡−(α−αI) (2.14)



Case 1: small net angle of attack.
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Case 2: large positive net angle of attack.
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Case 3: large negative net angle of attack.
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Figure 2: Brockett diagram and pressure distributions: VLM
‘–’; eqns. (2.9) and (2.12) ‘- -’; [−CP]max eqn. (2.20) ‘–’.

Brockett (1966) created the cavitation bucket diagram
(Fig. 2), which plots (α−αI) versus [−CP]max for a particular
camber ratio (i.e. fixed CLI ) and thickness ratio (τ ≡ t0/c).
These curves display three distinct regions:

Case 1: small net angle of attack (linear region).
[−CP]max is located at x/c≈ 1/2 on the upper surface. Since
r`/c� 1, equation (2.9) reduces to

[−CP]max ≈ A2
1 +2A1A2−1 (2.15)

which is indeed linearly-proportional to (α−αI).

Case 2: large positive net angle of attack (non-linear
region). Setting, d

dx ([−CP]max) = 0 in (2.9) gives the location
of [−CP]max on the upper surface

x/c =
A2

1

A2
1 +A2

2(1+2c/r`)2
(2.16)

Inserting (2.16) into (2.9) yields

[−CP]max ≈ A2
1 +A2

2(2c/r`)−1 (2.17)

Comparing (2.15) and (2.17), case 2 is when A2 > A1 r`/c.

Case 3: large negative net angle of attack (non-linear
region). Here, [−CP]max is located on the lower surface at

x/c =
A2

3

A2
3 +A2

4(1+2c/r`)2
(2.18)

(A3 and A4 are both positive) and similar to case 2,

[−CP]max ≈ A2
3 +A2

4(2c/r`)−1 (2.19)

This is the case when, by quadratic formula, A4 > (−2A1 +√
(2A1)2−4(2c/r`)(A2

3−A2
1))/(2 · (2c/r`)).

Thus, the bucket diagram can be formed as follows

[−CP]max ≈


A2

1 +2A1A2−1 (case 1)
A2

1 +A2
2(2c/r`)−1 (case 2)

A2
3 +A2

4(2c/r`)−1 (case 3)
(2.20)

The bucket diagram can also be computed numerically,
given the 2D geometry. The VLM code employed herein
(Kerwin, 2007), represents the blade using point sources and
vortices distributed along the chord line, and the Lighthill
leading edge correction is employed as well (Lighthill, 1951).
Fig. 3 shows good agreement between [−CP]max computed by
VLM and by (2.20) for a wide range of thickness ratios.

Equation (2.20) can be rearranged in terms of the blade
loading (Γ,V ∗) and the geometry (c,τ) as follows. Since
camber is fixed at the (endurance speed) design point, CLI =

CLe =
2Γe
V ∗e c . Also, one can approximate the lift coefficient at

an off-design point by CL =CLI +2π(α−αI). Thus, define

a1 ≡ 1.20 for ‘NACA 65A010’ (2.21)

a2 ≡
Γe

V ∗e (1+a)
(2.22)

a3 ≡
1

2π

(
2Γm

V ∗m
− 2Γe

V ∗e

)
(2.23)

such that

[−CP]max≈



(
1+a1τ+

a2

c

)2
+2
(

1+a1τ+
a2

c

) a3

c
−1(

1+a1τ+
a2

c

)2
+

a2
3

c2τ2
2
ρ`
−1

(
1+a1τ− a2

c

)2
+

a2
3

c2τ2
2
ρ`
−1

(2.24)
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Figure 3: Brockett diagram: VLM ‘–’; equation (2.20) ‘- -’.



3.0 DESIGN OPTIMIZATION METHODS

Herein, we consider the optimization of circulation,
camber, and thickness for given propeller design parameters.
In the standard approach (fig. 4a), only the endurance
speed is considered. The circulation and chord optimization
procedures are performed sequentially, iterating until
circulation converges (which, practically-speaking, implies
that chord has converged as well). In this procedure, the
chord lengths can be set to prevent cavitation at the endurance
speed, but this does not ensure that cavitation is prevented
at the ship’s maximum speed. Also, this method does not
typically involve blade thickness optimization.

In the present design method (Fig. 4b), both the
endurance speed and maximum speed are considered
automatically. An inner loop runs to optimize the circulation
distribution at the endurance speed, and an outer loop runs
to optimize the chord and thickness to prevent cavitation at
the maximum speed. When both the circulation and chord
have converged, the blade design is complete, and no further
modifications are necessary.

DETERMINE 
maximum speed state, Γm

Circulation converged?

SET pitch and camber ratio

OPTIMIZE circulation, Γe 
(at endurance speed)

yes

OPTIMIZE blade, t/c, c 
(at maximum speed state)

no

Chord converged?

yesno

START

STOP

Circulation converged?

SET pitch and camber ratio

OPTIMIZE circulation, Γe 
(at endurance speed)

OPTIMIZE blade, c 
(at endurance speed)

yesno

START

(a) Standard design method (b) Present design method

STOP

Figure 4: Propeller design optimization methods.

3.1 Circulation optimization

Circulation optimization is performed following the
procedure of Kerwin, Coney, and Hsin (1986), which is to
find the set of M vortex panel circulations that produce the
least torque for a specified (endurance speed) thrust, T = Te.
They form an auxiliary function, H = Q+λ1(T −Te), where
λ1 is a Lagrange multiplier, and they find the optimum Γ by
setting the partial derivatives of H to zero

∂H
∂Γ(i)

= 0,
∂H
∂λ1

= 0 (3.1)

which is a system of M+1 equations for as many unknowns
{Γ(i=1...M), λ1}. For a given chord distribution, c(r), this non-
linear system of equations can be solved iteratively.

3.2 Off-design analysis

In the procedure outlined in Fig. 4b, we are given a
maximum ship speed, Vm, and required thrust, Tm, and we
now need to determine the required rotation speed, ωm so we
can use the procedure in §2.1 to determine the max-speed
loading {Γm, V ∗m, etc.}, which is required for blade shape
optimization. From the given information, we can formulate
the required thrust coefficient (CTm or KTm )

CTm =
Tm

1
2 ρV 2

mπR2
=

8
π

KTm

J2
m

(3.2)

We now present a fast algorithm to determine the required
advance coefficient Jm = πVm

ωmR , such that CT (Jm) =CTm .

First note that for most propellers, the KT (J) curve is
nearly linear.

KTm ≡ KT (Jm)≈ KT (J)+K′T (J) · (Jm− J) (3.3)

where K′T ≡
dKT
dJ can be estimated using finite differences

between two prior KT (J) values. Thus,

CTm ≈
8
π

KT (J)+K′T (J) · (Jm− J)
J2

m
(3.4)

Given current J, KT (J), and K′T (J) values, the next guess for
Jm is then

Jm ≈
K′T +

√
(K′T )2−4(π

8CTm)(K
′
T · J−KT )

2(π

8CTm)
(3.5)

This typically only takes a few iterations to converge on the
Jm needed such that CT (Jm) =CTm .



3.3 Chord length optimization

Three chord length optimization methods are now
presented. Methods 1 and 2 must be used with procedure
(Fig. 4a), while method 3 is used with (Fig. 4b). A cavitation
margin, µ, can be implemented in methods 2 and 3 by
replacing σ with µσ in the following equations.

3.3.1 Method 1: maximum lift coefficient

Since lift coefficient is related to the pressure difference
across the blade section, it is a proxy measure of cavitation
performance. Typically, to mitigate cavitation inception
(particularly at the root and tip) section lift coefficients are
limited to a maximum allowable distribution:

CLmax(r) = 0.5+(0.2−0.5)
r−Rhub

Rtip−Rhub
(3.6)

which yields 0.5 at the hub and 0.2 at the tip. Thus, the
optimum chord length is

c =
2 Γe

V ∗e CLmax

(3.7)

While this simple method ensures adequate loading at the
(endurance speed) design point, it does not necessarily
prevent cavitation, nor does it prescribe the optimum
thickness distribution.

3.3.2 Method 2: Brockett diagram map

Coney (1989) sets the chord distribution based on the
following equation:

σ(r) =26.67
f 2
0

c2 +8.09
f0

c
+10.0

f0

c
t0
c
+3.033

t0
c

(3.8)

which approximately sets [−CP]max = σ at the transition
between case 1 and case 2 of the Brockett bucket diagram;
thus, it provides the optimum angle of attack envelope for the
given thickness, camber (2.1), and cavitation number (2.4).

This method can only be used to optimize the chord
distribution at the endurance speed, as equation (2.1) sets the
blade camber for the required loading at this design point,
and equation (3.8) implicitly assumes that the angle of attack
of the blade section is the ideal angle of attack, to center the
blade section in its Brockett bucket curve. This method also
requires t0(r) to be specified.

3.3.3 Method 3: linear foil theory CP

Using equation (2.24) to estimate [−CP]max, we are now
equipped to optimize both c and τ to prevent cavitation at the
maximum speed, for which we have computed Γm,V ∗m. Since
Tm > Te, α−αI > 0, and either case 1 or case 2 will apply.

Contours of [−CP]max for case 1 and case 2 are shown in
Fig. 5, with [−CP]max = σ highlighted in red. It is clear that
for case 2, when(

1+a1τ+
a2

c

)2
+

a2
3

c2τ2
2
ρ`
−1 = σ (3.9)

there is an optimum τ that minimizes c. Thus, a second
constraint equation is that dc

dτ
= 0 while traversing the contour

defined by (3.9):

2a1

(
1+a1τ+

a2

c

)
−2

a2
3

c2τ3
2
ρ`

= 0 (3.10)

Equations (3.9) and (3.10) form a deterministic set of
equations that prescribe (c,τ) given (Γe,V ∗e ,Γm,V ∗m, and σ).

For case 1,(
1+a1τ+

a2

c

)2
+2
(

1+a1τ+
a2

c

) a3

c
−1 = σ (3.11)

As shown in Fig. 5, setting τ = 0 minimizes the chord length,
but this is not possible due to strength considerations. If the τ

from case 2 is selected, then (3.11) yields the optimum chord.
The larger of the chord lengths required by case 1 and case 2
is then selected.

Surprisingly, this procedure naturally results in τ(r) that
varies nearly linearly along the span of the blade. The
required chord length at the root is quite short, and the blade is
quite thin at the root, which is not a practical design solution.
In particular, the resulting blade does not meet the American
Bureau of Shipping (ABS) standards for blade thickness at
the root. Thus, an additional modification to the blade shape
is required.

Case 1: small net angle of attack.
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Figure 5: Contours of [−CP]max, with [−CP]max = σ in red,
optimum (t0/c,c) ‘•’, and equation (3.10) ’- -’.



3.3.4 ABS thickness requirement

The American Bureau of Shipping standard requires
minimum blade thickness to meet strength requirements
(ABS, 2007). The formula is quite complex but can be
simplified as follows:

t025

D

√
c25

D
≈ T1 (3.12)

where

T1 ≡
T0

106

√
1+6/p70 +4.3p25

1+1.5p25

P
f ND3Z

T0 ≡ 1.025 ·337/
√

0.1 in SI units, p is pitch to diameter
ratio, D is diameter [m], f ≡ 2.62 for nickel-aluminum
bronze, N is RPM at endurance speed, P is power
at endurance speed [W], Z is number of blades, and
the subscripts 25 and 70 indicate r/R = 0.25 and 0.75,
respectively.

For a given thickness ratio distribution (namely, t0/c at
r = 0.25R), equation (3.12) can be used to find the required
thickness at the 0.25 radius

t025

D
≈
(

T1
√
(t0/c)25

)2/3
(3.13)

To meet this requirement, the thickness distribution is
modified as shown in Fig. 6. The new thickness distribution
is linear from r/R = 0.25 to the point where it intersects
the old thickness distribution tangentially and then follows
the old thickness distribution out to the tip. While holding
t0/c constant, chord is increased to meet this new thickness
distribution. ( c

D

)
new

=
(t0/D)ABS
(t0/c)old

(3.14)

0.2 0.4 0.6 0.8 1
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Initial thickness

Modified thickness

ABS requirement

Figure 6: Thickness modification to meet (3.12).

4.0 ILLUSTRATIVE EXAMPLE

An illustrative example is presented that combines the
performance specifications for the DDG51 destroyer-class
vessel (Tsai et al, 1994) with those of David Taylor
Propeller 5168 (Chesnakas and Jessup, 1998). DTMB 5168
is a representative modern surface ship controllable-pitch
propeller. The primary design parameters are listed in Table
1. Where possible, the design parameters follow those of
propeller 5168, namely Z, D, and Dhub/D. The thrust
requirements at the Ve = 20 knot endurance speed and Vm =
30 knot maximum speed were formed by multiplying the
values in (Tsai et al, 1994) by 1.09, in order to match the
KT requirement at the endurance speed with that of propeller
5168. The rotation rate at endurance speed was then chosen
to match the advance ratio of propeller 5168.

The inflow velocity profile was assumed uniform
(Va/Vs = 1 and Vt/Vs = 0 for all blade sections). Although
propeller 5168 employs rake and skew, these were set to zero
for this study. The section drag coefficient was assumed
to be CD = 0.008 for all blade sections. Blade sections
were formed using the ‘NACA a=0.8’ meanline and ‘NACA
65A010’ thickness forms.

Four propellers were designed in this study, as
summarized in Table 2. The ‘Epps w/ ABS’ propeller
employs the present design methods detailed in Fig. 4b,
§3.3.3, and §3.3.4. To highlight the effect of the ABS
requirement, the ‘Epps w/o ABS’ propeller was designed
using only Fig. 4b and §3.3.3. The standard design method
(Fig. 4a) yields the ‘CLmax’ propeller (§3.3.1) or the ‘Coney’
propeller (§3.3.2). The ‘CLmax’ and ‘Coney’ propellers used
the thickness distribution (t0/D) from the ‘Epps w/ ABS’
design.

Table 1: Propeller design input parameters.

Parameter Description
Z = 5 number of blades
D = 5.18 m diameter (17 ft)
Dhub = 1.46 m hub diameter (0.2819D)
Ne = 93.8 RPM rotation rate at Ve
Ve = 10.29 m/s endurance speed (20 kts)
Te = 4.159e5 N thrust at Ve
Vm = 15.43 m/s max speed (30 kts)
Tm = 1.38e6 N thrust at Vm

ρ = 1025 kg/m3 sea-water density
H = 6.31 m shaft depth (20.7 ft, at draft)
M = 20 number of vortex panels

Table 2: Summary of design methods.

Name Design methods
‘Epps w/ ABS’ Fig. 4b, §3.3.3, §3.3.4
‘Epps w/o ABS’ Fig. 4b, §3.3.3
‘CLmax’ Fig. 4a, §3.3.1
‘Coney’ Fig. 4a, §3.3.2



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

r / R

c 
/ 

R

 

 
Propeller 5168

Epps w/ ABS

Epps w/o ABS

CLmax

Coney

Figure 7: Chord distribution.

The blade outline for the four propellers and propeller
5168 are shown in Fig. 7. The ‘Epps w/ ABS’ design
well replicates Navy propeller 5168, which validates that
the procedures in §3.3.3 and §3.3.4 yield a realistic blade
outline. The ‘Epps w/o ABS’ propeller has a similar tip but
much shorter chord lengths (and thicknesses, as shown in
Fig. 8d) near the root. This illustrates how the ABS thickness
requirement augments the required blade shape. Both the
‘CLmax’ and ‘Coney’ propellers have much shorter chord
lengths, as these are only designed to mitigate cavitation at
the endurance speed.
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Figure 8: Performance of the four propeller designs, where
G = Γe

2πRVe
and CL = 2Γe

(V ∗e )c
.

Fig. 8 shows additional comparisons between these four
propeller designs. Fig. 8a shows that the endurance speed
circulation loading is nearly identical for the four designs;
this is because viscous parasitic drag forces are small
(Fv = 1

2 ρ(V ∗)2CDc, with CD = 0.008), so nearly the same
circulation loading is required regardless of the chord lengths.
Fig. 8b shows lift coefficient. Interestingly, the ‘Epps w/
ABS’ procedure results in a nearly linear CL distribution over
the span of the blade. In this case, these lift coefficients are

about half of those that we arbitrarily chose for the ‘CLmax’
propeller. This shows that while the ‘CLmax’ procedure
(§3.3.1) is sound, it doesn’t necessarily mitigate cavitation.
Figs. 8c and 8d show the thickness ratio and thickness,
respectively. Note that the ‘Epps w/ ABS’ propeller has
nearly the same thickness distribution as P5168, providing
another validation for this method. The ‘Epps w/o ABS’ has
a slightly different t0/c as the ‘Epps w/ ABS’; although t0/c
is fixed in the ABS procedure (§3.3.4) during each optimizer
iteration, the optimizer converged on slightly different results
after multiple iterations. Since the ‘CLmax’ and ‘Coney’
propellers used the t0/D from the ‘Epps w/ ABS’ design
but have smaller chord lengths, the t0/c distributions are
much larger and are in fact impractical. This emphasizes
the advantage o the present procedure, which optimizes both
thickness and chord with no a priori assumptions.
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Figure 9: Suction-side pressure distribution shows cavitation
performance: (top) endurance speed, (bottom) maximum
speed.

Fig. 9 compares the suction-side cavitation performance
of the ‘Epps w/ ABS’ propeller to the ‘CLmax’ propeller. The
pressure distributions were computed here using the 2D VLM
solver applied to each blade section. The top panel shows that
both are cavitation free at the endurance speed. The lower
panel shows that while the ‘Epps w/ ABS’ propeller is still
cavitation free at the maximum speed – as expected – the
‘CLmax’ propeller shows significant suction-side cavitation.

Figure 10: Design ‘Epps w/ ABS’ (left) versus Propeller
5168 (right).



Finally, Fig. 10 compares the 3D geometry of P5168 to
the ‘Epps w/ ABS’ propeller. For comparison, the rake and
skew distribution of P5168 were used for both figures. These
figures show that the ‘Epps w/ ABS’ procedure (Fig. 4b,
§3.3.3, and §3.3.4) clearly yields a realistic and representative
propeller blade design.

5.0 CONCLUSION

This paper presents an analytic estimate of the minimum
pressure coefficient on a 2D non-cavitating hydrofoil (2.20).
This estimate was used to develop an analytic approximation
to the cavitation bucket diagrams typically used in marine
propeller design. Further, a novel design procedure was
developed to optimize blade loading for maximum efficiency
at an endurance speed while mitigating cavitation at a
maximum speed (Fig. 4b). To enable this procedure,
a method was developed to efficiently find the advance
coefficient needed to produce a required thrust coefficient
(§3.2). Using the analytic estimate of the minimum pressure
coefficient, it was found that an optimum chord length
and thickness ratio exist, such that chord is minimized
while the negative pressure coefficient does not exceed the
cavitation number (§3.3.3). Finally, we illustrated this novel
optimization procedure in application the DDG51 destroyer-
class vessel (§4.0). The present methods are coded in the
OPENPROP suite (Kimball and Epps, 2010) and are readily-
available for academic and industrial use. This work extends
the capabilities of OPENPROP to high-speed ship propulsion
applications.

The design optimization procedure developed herein is
an automated, deterministic design approach, which enables
parametric studies comparing various design inputs, such
as propeller diameter, endurance speed rotation rate, and
number of blades.
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