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Propeller blade design for fast ships is often driven by cavitation constraints. A tradeoff exists,
where larger chord lengths and section thicknesses typically improve cavitation performance but
result in lower efficiency. Typically, chord lengths are optimized for the design condition (ship
endurance speed), with some specified margin to prevent cavitation off-design (at maximum ship
speed). Cavitation performance at the maximum speed is considered post-facto, and blade shape
often needs to be modified for cavitation considerations in high-speed operation.
This paper presents an improved method for blade shape optimization. The present method
simultaneously considers the cavitation performance at the endurance speed design point and a
maximum speed off-design point, and blade chord lengths and thicknesses are set to prevent
cavitation at both operational conditions. During the present design optimization routine, the on-
design load distribution is optimized, and the off-design performance is determined, such that the
chord lengths can be set to a minimum that still prevents cavitation at both the on- and off-design
conditions.
A case study is presented, considering the notional design of a propeller for the U.S. Navy DDG51
destroyer-class ship. Propellers designed using standard chord/thickness optimization procedures
are compared to those designed using the present procedures. Cavitation performance is compared
for the two design methods.

Keywords: propeller design, cavitation, blade optimization, chord length optimization, analytic
bucket diagram

1.0 INTRODUCTION

We seek a deterministic approach for optimizing propeller
blade chord and thickness in such a way as to maximize
efficiency, provide requisite blade strength, and mitigate
cavitation. For maximum efficiency, one desires zero
chord lengths, since viscous losses scale with chord.
However, structural considerations require finite chord and
thickness, and increasing chord typically improves cavitation
performance as well. So it is apparent that one can not
arbitrarily choose the chord and thickness distributions but
rather needs a deterministic optimization approach.

A number of design procedures exist to choose the chord
and thickness distributions to prevent cavitation at a single
design point, which either involve design tables (e.g. Brockett
(1966)) or curve fits to these tables (e.g. Coney (1989)).
However, these methods fail when multiple design points are
considered. Herein, we consider the problem of optimizing
loading for maximum efficiency at a ship’s 20 knot endurance

speed while optimizing the chord and thickness distributions
to prevent cavitation at both the endurance speed and a 30
knot maximum speed. Since we aim to optimize the design at
an off-design condition, the methods of Brockett (1966) and
Coney (1989) do not apply, and we need a new method to
optimize the blade shape to prevent cavitation.

This manuscript presents an improved design method that
can be used to determine preliminary chord and thickness
distributions for propeller blade design. The method employs
propeller lifting line theory for the design optimization and
analysis (Kerwin and Hadler, 2010), which is commonly
used in the preliminary design phase. It is expected that the
designer would then perform more advanced analyses using a
panel method or CFD code (Kinnas et al, 2002; Brizzolara
et al, 2010, e.g.). The aim of this work is to present a
rapid, automated algorithm that will determine a preliminary
design that closely matches the final output of these more
sophisticated, time-consuming, manual analyses.
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This article does not consider the case of a propeller
operating in a non-uniform inflow. A non-uniform axial
inflow presents a spatially-varying angle of attack between
a propeller blade section and its free-stream inflow (axial
inflow plus apparent rotational inflow). In this study, we do
not consider variations in angle of attack due to spatially-
varying axial inflow. Rather, we consider the case of angle of
attack variation due to the propeller operating at two different
advance coefficients (representing the endurance speed and
maximum speed).

This paper is organized as follows: In §2.0, we review the
theoretical foundation of the method. In §2.3, we develop
an analytic equation to predict the cavitation performance
of each 2D blade section. In §3.0, we develop a design
procedure to optimize blade loading for maximum efficiency
at an endurance speed while mitigating cavitation at a
maximum speed. This procedure is illustrated in §4.0 in
application the DDG51 destroyer-class vessel.

2.0 THEORY

2.1 Propeller lifting-line formulation
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Figure 1: Propeller velocity diagram at radius r.

In moderately-loaded propeller lifting line theory (Lerbs,
1952; Epps and Kimball, 2013b), a propeller blade is
represented by a vortex line, with trailing vorticity aligned
to the local flow velocity (free-stream plus induced velocity).
The induced velocities are computed using a vortex lattice,
with helical trailing vortex filaments shed at discrete stations
along the blade. The blade is also modeled as discrete vortex
panels, having 2D section properties at each radius. Loads are
computed by integrating the 2D section loads over the span.

Figure 1 illustrates the velocities and forces (per unit
radius) on a 2D blade section: axial and tangential inflow
velocities, Va and Vt ; axial and tangential induced velocities,
u∗a and u∗t ; and angular velocity ω. The total resultant inflow
velocity has magnitude V ∗ =

√
(Va +u∗a)2 +(ωr+Vt +u∗t )2

and is oriented at pitch angle βi to the et axis. Also shown
on Figure 1 are the angle of attack, α; blade pitch angle
θ=α+βi; circulation, Γ; inviscid Kutta-Joukowski lift force,
Fi = ρV ∗Γ; and viscous drag force, Fv =

1
2 ρ(V ∗)2CDc, where

ρ is the fluid density, CD is the section drag coefficient, and c
is the chord.

The 3D propeller geometry is built from given 2D section
profiles that are scaled and rotated according to the chord

length and the design point lift coefficient and inflow angle
{c,CLe ,βie} such that CL = CLI = CLe and α = αI at the
(endurance speed) design point:{

CL,αI ,
f0

c

}
=

CLe

C̃LI

·

{
C̃LI , α̃I ,

f̃0

c

}
(2.1)

θ = αI +βie (2.2)

where CLI and αI are the ideal lift coefficient and angle of
attack, and the tilde values are the given profile (Abbott and
Doenhoff, 1959).

The off-design performance of a propeller is computed
using the method of (Epps, 2010). Each operating state is
defined by the ship speed, Vs, rotation rate, ω, and unknown
parameters {V ∗, α, CL, Γ, u∗a, u∗t , βi, ū∗a, ū∗t }. Since there are
M vortex panels, there are 7M+2M2 unknowns and a system
of as many non-linear equations. This system is solved using
a Newton solver, which drives the following residual vector
to zero (for each blade section).

R =



V ∗ −
√

(Va +u∗a)2 +(ωmrc +Vt +u∗t )2

α − (αI +βie −βi)
CL − CL(α)
Γ −

( 1
2CLV ∗c

)
u∗a −

(
[ū∗a] · [Γ]

)
u∗t −

(
[ū∗t ] · [Γ]

)


(2.3)

where CL(α) ≈ CLe + 2π(α − αI) before stall and
approximately constant post stall. Between solver iterations,
{βi, ū∗a, and ū∗t } are updated. For each operating state, thrust,
torque, and efficiency are easily calculated.

2.2 Cavitation

The local cavitation number is defined as

σ(r)≡ patm +ρgH− pv
1
2 ρ(V ∗(r))2

(2.4)

with atmospheric pressure patm = 101 kPa, seawater density
ρ= 1025 kg/m3, gravity g= 9.81 m/s2, shaft centerline depth
H, and vapor pressure pv = 2500 Pa. The pressure coefficient
(at radius r and chordwise location x) is

Cp(r,x)≡
p(r,x)− (patm +ρgH)

1
2 ρ(V ∗(r))2

(2.5)

Since cavitation may occur when the pressure falls below
the vapor pressure, chord must be made large enough such
that the minimum pressure coefficient (i.e. maximum −Cp)
satisfies

[−Cp]max ≤ σ (2.6)

(Kerwin and Hadler, 2010).

Note that (2.4) represents the circumferential-average
cavitation number for a particular radius, since the depth
is taken as the shaft centerline depth, H. For a more
conservative design requirement (2.6), one could compute the
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cavitation number using the minimum depth seen by the blade
section, H− r.

The minimum blade pressure, [−Cp]max, is a function
of the blade loading {Γ,V ∗,α} as well as the geometry
{θ, f0, t0,c}. Since the pitch and camber must be set to
provide the required thrust loading at the endurance speed,
the only tunable parameters (to prevent cavitation at the
maximum speed) are the thickness and chord. In the
following section, an analytic estimate of [−Cp]max is derived,
which can be used in conjunction with design constraint (2.6)
to optimize thickness and chord.

2.3 An analytic estimate of [−Cp]max

In order to develop a deterministic design method that
satisfies (2.6), we now formulate an analytic estimate of
[−Cp]max. Employing Bernoulli’s equation, (2.5) can be
written as

−Cp(x) =
{

q(x)
V ∗

}2

−1 (2.7)

where q(x) is the the total fluid velocity. For a 2D hydrofoil
spanning 0≤ x≤ c, linear theory (with the Lighthill leading-
edge correction) gives

q(x)
V ∗

=

(
1+

ut(x)
V ∗
± uc(x)

V ∗

)√
x

x+ 1
2 r`
±(α−αI)

√
c− x

x+ 1
2 r`

(2.8)
where ut and uc are the perturbation velocities due to
thickness and camber effects, respectively, and r` is the
leading-edge radius.

A typical propeller blade section may be generated by
superposition of a meanline form and thickness form for a
given camber ratio f0/c and thickness ratio

τ≡ t0
c

For thin hydrofoils, the thickness perturbation velocity is
proportional to the thickness ratio,

ut(x)
V ∗
≈ a1τ

Typical values of the constant a1 are given in Table 1.

Table 1: Typical values of the constant a1.

a1 Thickness Form
4/π≈ 1.27 parabolic

1.20 NACA 65A
1.18 NACA 66

Similarly, the camber perturbation velocity can be
assumed to be linearly proportional to the camber ratio,

uc(x)
V ∗
∼ f0

c

with the constant of proportionality depending on the
meanline form. In lieu of determining these constants of

proportionality, we note that the camber ratio is linearly
proportional to the ideal lift coefficient for the section. For
example, a NACA ‘a’-series camber line scaled for ideal lift
coefficient CLI has a camber perturbation velocity of

uc(x)
V ∗
≈ 1

2
CLI

(1+a)

The leading edge radius is proportional to the square of
the thickness ratio,

r`
c
= ρ`τ

2

where ρ` is the leading edge radius ratio for unit τ.

Combining these approximations for ut and uc, we can
develop an analytic approximation for−Cp(x). For the upper
surface (suction side)

−Cp(x)≈

{
A1

√
x

x+ 1
2 r`

+A2

√
c− x

x+ 1
2 r`

}2

−1 (2.9)

A1 ≡ 1+a1τ+
1
2

CLI

(1+a)
(2.10)

A2 ≡ α−αI (2.11)

and for the lower surface (pressure side)

−Cp(x)≈

{
A3

√
x

x+ 1
2 r`

+A4

√
c− x

x+ 1
2 r`

}2

−1 (2.12)

A3 ≡ 1+a1τ− 1
2

CLI

(1+a)
(2.13)

A4 ≡−(α−αI) (2.14)

Brockett (1966) created the cavitation bucket diagram
(Figure 2), which plots (α − αI) versus [−Cp]max for a
particular camber ratio (i.e. fixed CLI ) and thickness ratio
(τ≡ t0/c). These curves display three distinct regions:

Case 1: small net angle of attack (linear region).
[−Cp]max is located at x/c≈ 1/2 on the upper surface. Since
r`/c� 1, equation (2.9) reduces to

[−Cp]max ≈ A2
1 +2A1A2−1 (2.15)

which is indeed linearly-proportional to (α−αI).

Case 2: large positive net angle of attack (non-linear
region). Setting, d

dx ([−Cp]max) = 0 in (2.9) gives the location
of [−Cp]max on the upper surface

x/c =
A2

1

A2
1 +A2

2(1+2c/r`)2
(2.16)

Inserting (2.16) into (2.9) yields

[−Cp]max ≈ A2
1 +A2

2(2c/r`)−1 (2.17)

Comparing (2.15) and (2.17), case 2 is when A2 > A1 r`/c.
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Figure 2: Brockett diagram and pressure distributions, comparing VLM code versus analytic Cp(x/c) equations (2.9) and (2.12),
and [−Cp]max equation (2.20).
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Case 3: large negative net angle of attack (non-linear
region). Here, [−Cp]max is located on the lower surface at

x/c =
A2

3

A2
3 +A2

4(1+2c/r`)2
(2.18)

(A3 and A4 are both positive) and similar to case 2,

[−Cp]max ≈ A2
3 +A2

4(2c/r`)−1 (2.19)

This is the case when, by quadratic formula,

A4 >
−2A1 +

√
(2A1)2−4(2c/r`)(A2

3−A2
1)

2 · (2c/r`)

Thus, the bucket diagram can be formed as follows

[−Cp]max ≈


A2

1 +2A1A2−1 (case 1)
A2

1 +A2
2(2c/r`)−1 (case 2)

A2
3 +A2

4(2c/r`)−1 (case 3)
(2.20)

The bucket diagram can also be computed numerically,
given the 2D geometry. The VLM code employed herein
(Kerwin, 2007), represents the blade using point sources and
vortices distributed along the chord line, and the Lighthill
leading edge correction is employed as well (Lighthill, 1951).
Figure 3 shows good agreement between [−Cp]max computed
by VLM and by (2.20) for a wide range of thickness ratios.
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Figure 3: Brockett diagram: VLM ‘–’; equation (2.20) ‘- -’.
Colors distinguish thickness to chord ratios t0/c∈ [0.02,0.18]
as shown.

Equation (2.20) can be rearranged in terms of the blade
loading (Γ,V ∗) and the geometry (c,τ) as follows. Since
camber is fixed at the (endurance speed) design point, CLI =

CLe =
2Γe

V ∗e c
. Also, one can approximate the lift coefficient at

an off-design point by CL ≈CLI +2π(α−αI). Thus, define

a1 ≡ 1.20 for ‘NACA 65A’ (2.21)

a2 ≡
Γe

V ∗e (1+a)
(2.22)

a3 ≡
1

2π

(
2Γm

V ∗m
− 2Γe

V ∗e

)
(2.23)

such that

[−Cp]max≈



(
1+a1τ+

a2

c

)2
+2
(

1+a1τ+
a2

c

) a3

c
−1(

1+a1τ+
a2

c

)2
+

a2
3

c2τ2
2
ρ`
−1

(
1+a1τ− a2

c

)2
+

a2
3

c2τ2
2
ρ`
−1

(2.24)

A design procedure that employs (2.24) can now be
summarized. For given loading, constants {a1,a2,a3} can
be computed. Then contours of [−Cp]max can be found
for several {c,τ}. The optimum design minimizes c while
[−Cp]max = σ. This method is discussed in detail in §3.3.3.

3.0 DESIGN OPTIMIZATION METHODS

Herein, we consider the optimization of circulation,
camber, and thickness for given propeller design parameters.
In the standard approach (Figure 4a), only the endurance
speed is considered. The circulation and chord optimization
procedures are performed sequentially, iterating until
circulation converges (which, practically-speaking, implies
that chord has converged as well). In this procedure, the
chord lengths can be set to prevent cavitation at the endurance
speed, but this does not ensure that cavitation is prevented
at the ship’s maximum speed. Also, this method does not
typically involve blade thickness optimization.

In the present design method (Figure 4b), both the
endurance speed and maximum speed are considered
automatically. An inner loop runs to optimize the circulation
distribution at the endurance speed, and an outer loop runs
to optimize the chord and thickness to prevent cavitation
at the maximum speed. When both the circulation and
chord have converged, the blade design is complete, and no
further modifications are necessary. This design optimization
procedure is an automated, deterministic design approach,
which enables parametric studies comparing various design
inputs, such as propeller diameter, endurance speed rotation
rate, and number of blades.
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maximum speed state, Γm
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(a) Standard design method (b) Present design method

STOP

Figure 4: Propeller design optimization methods.

3.1 Circulation optimization

Circulation optimization is performed following the
procedure of Kerwin, Coney, and Hsin (1986), which is to
find the set of M vortex panel circulations that produce the
least torque for a specified (endurance speed) thrust, T = Te.
They form an auxiliary function, H = Q+λ1(T −Te), where
λ1 is a Lagrange multiplier and Q is the torque, and they find
the optimum Γ by setting the partial derivatives of H to zero

∂H
∂Γ(i)

= 0,
∂H
∂λ1

= 0 (3.1)

which is a system of M+1 equations for as many unknowns
{Γ(i=1...M), λ1}. For a given chord distribution, c(r), this non-
linear system of equations can be solved iteratively.

3.2 Off-design analysis

In the procedure outlined in Figure 4b, we are given a
maximum ship speed, Vm, and required thrust, Tm, and we
now need to determine the required rotation speed, ωm so we
can use the procedure in §2.1 to determine the max-speed
loading {Γm, V ∗m, etc.}, which is required for blade shape
optimization. From the given information, we can formulate
the required thrust coefficient (CTm or KTm )

CTm =
Tm

1
2 ρV 2

mπR2
=

8
π

KTm

J2
m

(3.2)

We now present a fast algorithm to determine the required

advance coefficient Jm =
πVm

ωmR
, such that CT (Jm) =CTm .

First note that for most propellers, the KT (J) curve is
nearly linear.

KTm ≡ KT (Jm)≈ KT (J)+K′T (J) · (Jm− J) (3.3)

where K′T ≡
dKT
dJ can be estimated using finite differences

between two prior KT (J) values. Thus,

CTm ≈
8
π

KT (J)+K′T (J) · (Jm− J)
J2

m
(3.4)

Given current J, KT (J), and K′T (J) values, the next guess for
Jm is then

Jm ≈
K′T +

√
(K′T )2−4(π

8CTm)(K
′
T · J−KT )

2(π

8CTm)
(3.5)

This typically only takes a few iterations to converge on the
Jm needed such that CT (Jm) =CTm .

3.3 Chord length optimization

Three chord length optimization methods are now
presented. Methods 1 and 2 must be used with procedure
(Figure 4a), while method 3 is used with (Figure 4b). A
cavitation margin, µ, can be implemented in methods 2 and
3 by replacing σ with µσ in the following equations.

3.3.1 Method 1: maximum lift coefficient

Since lift coefficient is related to the pressure difference
across the blade section, it is a proxy measure of cavitation
performance. Typically, to mitigate cavitation inception
(particularly at the root and tip) section lift coefficients are
limited to a maximum allowable distribution:

CLmax(r) = 0.5+(0.2−0.5)
r−Rhub

Rtip−Rhub
(3.6)

which yields 0.5 at the hub and 0.2 at the tip. Thus, the
optimum chord length is

c =
2 Γe

V ∗e CLmax

(3.7)

While this simple method ensures adequate loading at the
(endurance speed) design point, it does not necessarily
prevent cavitation, nor does it prescribe the optimum
thickness distribution.

3.3.2 Method 2: Brockett diagram map

Coney (1989) sets the chord distribution based on the
following equation:

σ(r) =26.67
f 2
0

c2 +8.09
f0

c
+10.0

f0

c
t0
c
+3.033

t0
c

(3.8)

which approximately sets [−Cp]max = σ at the transition
between case 1 and case 2 of the Brockett bucket diagram;
thus, it provides the optimum angle of attack envelope for the
given thickness, camber (2.1), and cavitation number (2.4).

This method can only be used to optimize the chord
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distribution at the endurance speed, as equation (2.1) sets the
blade camber for the required loading at this design point,
and equation (3.8) implicitly assumes that the angle of attack
of the blade section is the ideal angle of attack, to center the
blade section in its Brockett bucket curve. This method also
requires t0(r) to be specified.

3.3.3 Method 3: linear foil theory Cp

Using equation (2.24) to estimate [−Cp]max, we are now
equipped to optimize both c and τ to prevent cavitation at the
maximum speed, for which we have computed Γm,V ∗m.

Generally for displacement-hull vessels, CTm > CTe

(which requires Jm < Je); thus, α−αI > 0, and either case
1 or case 2 will apply. Contours of [−Cp]max for case 1 and
case 2 are shown in Figure 5, with [−Cp]max = σ highlighted
in red.

For case 2, equations (2.6) and (2.24) yield(
1+a1τ+

a2

c

)2
+

a2
3

c2τ2
2
ρ`
−1 = σ (3.9)

which is plotted in red in Figure 5. It is clear from Figure 5
that there is an optimum τ that minimizes c. Thus, a second

constraint equation is that
dc
dτ

= 0 while traversing the contour
defined by (3.9):

2a1

(
1+a1τ+

a2

c

)
−2

a2
3

c2τ3
2
ρ`

= 0 (3.10)

Equations (3.9) and (3.10) form a deterministic set of
equations that prescribe (c,τ) given (Γe,V ∗e ,Γm,V ∗m, and σ).
The intersection of (3.9) and (3.10) yields the optimum c and
τ, which is plotted as a ‘•’ in Figure 5.

For case 1, equations (2.6) and (2.24) yield(
1+a1τ+

a2

c

)2
+2
(

1+a1τ+
a2

c

) a3

c
−1 = σ (3.11)

As shown in Figure 5, setting τ = 0 minimizes the chord
length, but this is not possible due to strength considerations.
If the τ from case 2 is selected, then (3.11) yields the optimum
chord. The larger of the chord lengths required by case 1 and
case 2 is then selected.

Case 1: small net angle of attack.
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Figure 5: Contours of [−Cp]max (2.24), with [−Cp]max = σ

(3.9) marked in red, constraint equation (3.10) ’- -’, and
optimum (c,τ) ‘•’.

Generally for planing-hull vessels, CTm < CTe (which
requires Jm > Je); thus, α−αI < 0, and either case 1 or case
3 will apply. Case 1 has already been discussed. For case 3,
equations (2.6) and (2.24) yield(

1+a1τ− a2

c

)2
+

a2
3

c2τ2
2
ρ`
−1 = σ (3.12)

Qualitatively, contours of [−Cp]max for case 3 are similar to
those for case 2. Likewise, equation (3.12) behaves similarly
to (3.9), and the resulting constraint equation ( dc

dτ
= 0) is

2a1

(
1+a1τ− a2

c

)
−2

a2
3

c2τ3
2
ρ`

= 0 (3.13)

Analogous to equations (3.9) and (3.10) for the displacement-
hull vessel, the intersection of (3.12) and (3.13) yields the
optimum c and τ for the planing-hull vessel.

Surprisingly, this procedure naturally results in τ(r) that
varies nearly linearly along the span of the blade. The
required chord length at the root is quite short, and the blade is
quite thin at the root, which is not a practical design solution.
In particular, the resulting blade does not meet the American
Bureau of Shipping (ABS) standards for blade thickness at
the root. Thus, an additional modification to the blade shape
is required.
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3.3.4 ABS thickness requirement

The American Bureau of Shipping standard requires
minimum blade thickness to meet strength requirements
(ABS, 2007). Herein, we consider the ABS requirement for
fixed-pitch propellers (ABS, 2007, part 4-3-3, subsection 5.1,
p.241). The formula is quite complex but can be simplified as
follows:

t025

D

√
c25

D
≈ T1 (3.14)

where

T1 ≡
T0

106

√
1+6/ p̄70 +4.3p̄25

1+1.5p̄25

Pr

f NrD3Z

and T0 ≡ 1.025 ·337/
√

0.1 in SI units; c is the section chord
length [m]; t0 is the maximum section thickness [m]; p̄ is
the pitch to diameter ratio; D is the diameter [m]; f ≡ 2.62
for nickel-aluminum bronze; Nr is the rotation rate [RPM]
at engine rated speed; Pr is the power [W] at engine rated
speed; Z is the number of blades; and the subscripts 25
and 70 indicate r/R = 0.25 and 0.70, respectively. Herein,
we take the engine rated speed condition to be the the ship
maximum speed condition: Pr ≡ Pm = 0.5ρV 3

mπR2CPm and
Nr ≡ Nm = 60Vm/(JmD).

For a given thickness ratio distribution (namely, t0/c at
r = 0.25R), equation (3.14) can be used to find the required
thickness at the 0.25 radius:

t025

D
≈
(

T1
√
(t0/c)25

)2/3
(3.15)

To meet this requirement, the thickness distribution
is modified as shown in Figure 6. The new thickness
distribution is linear from r/R = 0.25 to the point where it
intersects the old thickness distribution tangentially and then
follows the old thickness distribution out to the tip. While
holding t0/c constant, chord is increased to meet this new
thickness distribution.( c

D

)
new

=
(t0/D)ABS
(t0/c)old

(3.16)
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Figure 6: Thickness modification to satisfy (3.15).

4.0 ILLUSTRATIVE EXAMPLE

An illustrative example is presented that combines the
performance specifications for the DDG51 destroyer-class
vessel (Tsai et al, 1994) with those of David Taylor Model
Basin propeller 5168 (Chesnakas and Jessup, 1998). DTMB
5168 is a representative modern surface ship propeller,
suitable for the DDG 51 vessel. Although DTMB 5168 is
a controllable-pitch propeller, the example herein considers
designing a fixed-pitch propeller (as the present design
method is restricted to fixed-pitch propellers). The design
specifications for propeller 5168 are a representative set of
specifications for this example displacement-hull vessel. The
primary design parameters are listed in Table 2. Where
possible, the design parameters follow those of propeller
5168, namely Z, D, and Dhub/D. The thrust requirements at
the Ve = 20 knot endurance speed and Vm = 30 knot maximum
speed were formed by multiplying the values in (Tsai et al,
1994) by 1.09, in order to match the KT requirement at the
endurance speed with that of propeller 5168. The rotation
rate at endurance speed was then chosen to match the advance
ratio of propeller 5168.

The inflow velocity profile was assumed uniform
(Va/Vs = 1 and Vt/Vs = 0 for all blade sections). Although
propeller 5168 employs rake and skew, these were set to zero
for this study. The section drag coefficient was assumed to
be CD = 0.008 for all blade sections. Blade sections were
formed using the ‘NACA a=0.8’ meanline and ‘NACA 65A’
thickness forms.

Four propellers were designed in this study, as
summarized in Table 3. The ‘Epps w/ ABS’ propeller
employs the present design methods detailed in Figure 4b,
§3.3.3, and §3.3.4. To highlight the effect of the ABS
requirement, the ‘Epps w/o ABS’ propeller was designed
using only Figure 4b and §3.3.3. The standard design
method (Figure 4a) yields the ‘CLmax’ propeller (§3.3.1) or
the ‘Coney’ propeller (§3.3.2). The ‘CLmax’ and ‘Coney’
propellers used the thickness distribution (t0/D) from the
‘Epps w/ ABS’ design.

Table 2: Propeller design input parameters.

Parameter Description
Z = 5 number of blades
D = 5.18 m diameter (17 ft)
Dhub = 1.46 m hub diameter (0.2819D)
Ne = 93.8 RPM rotation rate at Ve
Ve = 10.29 m/s endurance speed (20 kts)
Te = 4.159e5 N thrust at Ve
Vm = 15.43 m/s max speed (30 kts)
Tm = 1.38e6 N thrust at Vm

ρ = 1025 kg/m3 sea-water density
H = 6.31 m shaft depth (20.7 ft, at draft)
M = 20 number of vortex panels
Je = 1.2701 advance coefficient at Ve
CTe = 0.3637 thrust coefficient at Ve
CTm = 0.5364 thrust coefficient at Vm
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Table 3: Summary of design methods.

Name Design methods
‘Epps w/ ABS’ Figure 4b, §3.3.3, §3.3.4
‘Epps w/o ABS’ Figure 4b, §3.3.3
‘CLmax’ Figure 4a, §3.3.1
‘Coney’ Figure 4a, §3.3.2
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Figure 7: Chord distribution.

The blade outline for the four propellers and propeller
5168 are shown in Figure 7. The ‘Epps w/ ABS’ design
well replicates Navy propeller 5168, which validates that the
procedures in §3.3.3 and §3.3.4 yield a realistic blade outline.
The ‘Epps w/o ABS’ propeller has a similar tip but much
shorter chord lengths (and thicknesses, as shown in Figure 8d)
near the root. This illustrates how the ABS thickness
requirement augments the required blade shape. Both the
‘CLmax’ and ‘Coney’ propellers have much shorter chord
lengths, as these are only designed to mitigate cavitation at
the endurance speed.

Figure 8 shows additional comparisons between these
four propeller designs. Figure 8a shows that the endurance
speed circulation loading is nearly identical for the four
designs; this is because viscous parasitic drag forces are
small (Fv = 1

2 ρ(V ∗)2CDc, with CD = 0.008), so nearly the
same circulation loading is required regardless of the chord
lengths. Figure 8b shows lift coefficient. Interestingly,
the ‘Epps w/ ABS’ procedure results in a nearly linear CL
distribution over the span of the blade. In this case, these
lift coefficients are about half of those that we arbitrarily
chose for the ‘CLmax’ propeller. This shows that while the
‘CLmax’ procedure (§3.3.1) is sound, it doesn’t necessarily
mitigate cavitation. Figs. 8c and 8d show the thickness ratio
and thickness, respectively. Note that the ‘Epps w/ ABS’
propeller has nearly the same thickness distribution as P5168,
providing another validation for this method. The ‘Epps w/o
ABS’ has a slightly different t0/c as the ‘Epps w/ ABS’;
although t0/c is fixed in the ABS procedure (§3.3.4) during
each optimizer iteration, the optimizer converged on slightly
different results after multiple iterations. Since the ‘CLmax’
and ‘Coney’ propellers used the t0/D from the ‘Epps w/ ABS’
design but have smaller chord lengths, the t0/c distributions
are much larger and are in fact impractical. This emphasizes

the advantage o the present procedure, which optimizes both
thickness and chord with no a priori assumptions.

Figure 9 compares the suction-side cavitation
performance of the ‘Epps w/ ABS’ propeller to the ‘CLmax’
propeller. The pressure distributions were computed here
using the 2D VLM solver applied to each blade section. The
top panel shows that both are cavitation free at the endurance
speed. The lower panel shows that while the ‘Epps w/ ABS’
propeller is still cavitation free at the maximum speed – as
expected – the ‘CLmax’ propeller shows significant suction-
side cavitation.

Finally, Figure 10 compares the 3D geometry of P5168 to
the ‘Epps w/ ABS’ propeller. For comparison, the rake and
skew distribution of P5168 were used for both figures. These
figures show that the ‘Epps w/ ABS’ procedure (Figure 4b,
§3.3.3, and §3.3.4) clearly yields a realistic and representative
propeller blade design.

(a) (b)

Figure 10: Propeller geometry: (a) ‘Epps w/ ABS’ design
using propeller 5168 skew; (b) actual DTMB propeller 5168.

The outputs of the method in this paper are the
propeller chord and thickness distributions (in addition to
the circulation, pitch, and camber distributions derived from
the standard lifting line design method); rake and skew
could then be applied to the propeller, as illustrated here.
The known limitation of the lifting line method is that the
predicted pitch and camber distributions will not actually
yield the desired circulation distribution; advance design
techniques, incorporating the use of lifting surface or panel
methods could be used to modify the pitch and camber
distributions of the ‘Epps w/ ABS’ blade geometry to achieve
the desired ‘Epps w/ ABS’ circulation distribution (Greeley
and Kerwin, 1982).
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Figure 8: Performance of the four propeller designs, where G =
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Figure 9: Suction-side pressure distribution shows cavitation performance: (top) endurance speed, (bottom) maximum speed;
(left) ‘Epps w/ ABS’ design, (right) ‘CLmax’ design.
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4.1 Parametric design study

We now investigate the effect of varying certain
parameters in our design exercise. In particular, we consider
the effects of maximum speed Vm, required thrust coefficient
at maximum speed CTm , and shaft submergence depth. In this
study, the ‘Epps w/ ABS’ procedure (Figure 4b, §3.3.3, and
§3.3.4) is used to design several additional propellers.

Figure 11a shows the effect of varying the maximum
speed Vm while holding the maximum thrust coefficient CTm

constant. Not surprisingly, increasing Vm increases both
the required chord length and thickness distributions, with
the largest c/R and t0/c distributions shown in Figure 11a
corresponding to the largest Vm considered. The nominal
design (Figs. 7 and 8) is shown for reference. Interestingly,
as Vm is reduced to Ve, the ‘Epps w/ ABS’ procedure results
in nearly the same chord distribution as the Coney (1989)
procedure, for radii near the tip (r/R > 0.8).

Figure 11b shows the effect of varying the required
maximum thrust coefficient CTm , while holding Vm fixed.
Again the results are not surprising; increasing CTm increases
the required chord and thickness.

Finally, Figure 11c shows the effect of varying the
shaft submergence depth H. This parameter only affects
the cavitation number, via (2.4). Decreasing the shaft
submergence depth also increases the required chord and
thickness. However, the effect of H is less pronounced than
that of CTm or Vm.

5.0 CONCLUSION

This paper presents an analytic estimate of the minimum
pressure coefficient on a 2D non-cavitating hydrofoil (2.20).
This estimate was used to develop an analytic approximation
to the cavitation bucket diagrams typically used in marine
propeller design. Further, a novel design procedure was
developed to optimize blade loading for maximum efficiency
at an endurance speed while mitigating cavitation at a
maximum speed (Figure 4b). To enable this procedure,
a method was developed to efficiently find the advance
coefficient needed to produce a required thrust coefficient
(§3.2). Using the analytic estimate of the minimum pressure
coefficient, it was found that an optimum chord length
and thickness ratio exist, such that chord is minimized
while the negative pressure coefficient does not exceed the
cavitation number (§3.3.3). Finally, we illustrated this novel
optimization procedure in application the DDG51 destroyer-
class vessel (§4.0).

The present methods are coded in the OPENPROP
suite (Epps and Kimball, 2013a) and are readily-available
for academic and industrial use. This work extends the
capabilities of OPENPROP to high-speed ship propulsion
applications.

The design optimization procedure developed herein is
an automated, deterministic design approach, which enables
parametric studies comparing various design inputs, such
as propeller diameter, endurance speed rotation rate, and

number of blades.

This article did not consider the case of a propeller
operating in spatially-varying axial inflow. This case actually
is quite important, as a ship wake typically produces an axial
velocity defect in the “10 o’clock – 2 o’clock region” of
the propeller inflow. This axial velocity defect results in
local angle of attack changes at each blade section, which
ultimately may lead to cavitation. The methods presented
in this work can, in principle, be extended to include rough
estimates of cavitation for propellers operating in this non-
uniform inflow as it rotates through the ship wake field.
Cavitation estimates could be computed at several blade
positions using the ‘analytical Brockett diagram’ method
presented in §2.3. However, since the methods presented
herein assume a fully-wetted blade, estimates of cavitation
area on a partially-cavitating blade would be very rough. The
extension of the present methods to non-uniform inflow is the
subject of ongoing work.

The present method is intended for preliminary design
work at the lifting line model stage. Thus, the output blade
geometry (camber and pitch) suffers the known limitations
of lifting line model. A more complete numerical method
would couple the present lifting line model with a lifting
surface blade design model, such that a more accurate blade
geometry and pressure distribution can be computed for
each candidate propeller design. Combining lifting line,
lifting surface, and the optimization methods presented herein
would provide an automated design procedure to determine
an optimum propeller geometry including number of blades
and diameter, as well as the chord, pitch, camber, and
thickness distributions.
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